
ANNEXURE

Climate Change and Environment Action Plan of Bhopal District

Contents

Contents Annexu	re to Background	2 3
Annexure		5
1.1. l	List of major industries in Bhopal district	5
1.2. [Details of MSME units by industry type in Bhopal district	5
1.3. E	Estimation of emissions from electricity consumption by industry & agriculture sector	6
1.4. l	Livestock Population by categories of Bhopal District	6
Annexure 2 2.1. E	2 Background Note	7 7
2.2.	Data Source and Methodology	7
Annexure 3	3 About Greenhouse Gas Emissions Inventorization	10 10
3.2 9	Sources of Activity Data Used in Bhopal's GHG Emissions Inventory	11
	4 mate Impact Evaluation of Policies/Programmes in Power & Energy Sector Climate Impact Evaluation of Policies/Programmes in Agriculture, Forestry & Other Land	12 12 d 15
4.3. (Climate Impact Evaluation of Policies/Programmes in Cross-Cutting: Agriculture & Powe	er17
4.4. (Climate Impact Evaluation of Policies/Programmes in Waste Management Sector	19
4.4.2 Exte Annexure	erview of Budgetary Analysis	22 23 24 24 24 24
Objec	ctives	24
Outco	omes	24
	dgetary Analysis Methodology Iodology	25 25
Assun	nptions	25
5.3. A	Analysis of schemes at district level	28
MG	GNREGS	29
PM	IKSY	30
Gre	een India Mission (GIM)	30
AM	IRUT	30
De	en Dayal Upadhyay Gram Jyoti Yojana (DDUGJY) and Saubhagya Scheme	31

Annexure A

Annexure to Background

It is crucial to further deepen the process of integrating climate change actions into the developmental planning and programme implementation processes, going beyond the state and directly involving the districts. This is required in order to promote a bottom-up approach in addressing climate change concerns, especially mitigation, into ongoing schemes, policies and programmes at the district level, which is where most of the government's ongoing initiatives and priorities integrate and converge. With SAPCCs being revised, district specific climate action plans will ensure the much-needed directional shift at the district level administration while taking the Nationally Determined Contribution (NDCs) and Sustainable Development Goals (SDGs) forward.

In this context, Vasudha Foundation initiated the project to develop the District Climate Change and Environment Action Plan (DCEAP) for multiple districts of India with support from Shakti Sustainable Energy Foundation. In Madhya Pradesh, DCEAP has been developed for Bhopal and Indore districts in association with the State Knowledge Management Centre on Climate Change (SKMCCC), Environmental Planning & Coordination Organization (EPCO), Department of Environment, Government of Madhya Pradesh. The key objectives of the DCEAP are:

- To facilitate a bottom-up approach for climate planning
- Identify local level climate change drivers and sectoral mitigation potential
- Identify and propose recommendations for sectors to enhance climate action as well as for local environmental concerns
- Enhance climate accountability of district level administration

The major components, deliverables, and SDG linkages are summarized in the following table:

Major Components	Major Deliverables	Addressing SDG
District & Climate Profile	 Information on demography, administration, land-use etc. District profile including power sector, industry, Habitat, Agriculture and other natural resources, Waste profile Observed climate variability Climate change projections (RCP 4.5 & RCP 8.5: till end of century, in time slices of 2030, 2050, 2070 & 2100) 	The proposed study and action plans directly address at least seven following SDGs at district level:
District GHG profile and trend analysis	 Climate change direct drivers: Source based emission estimations from the sectors of Energy, AFOLU & Waste since 2005 to latest year (using IPCC methodology and as per data availability) and projections till 2030 – BAU Carbon footprint of electricity consumption trends and Projections – BAU 	 SDG 2: Zero Hunger (Target 2.1, 2.3, 2.4) SDG 6: Clean Water & Sanitation
Policy Impact Evaluation	 Climate (GHG) impact evaluation of sector specific policies/schemes/rules (Energy, AFOLU, Waste, Cross- 	 SDG 7: Affordable & Clean Energy

Major Components	Major Deliverables	Addressing SDG
Budgetary Allocation Analysis	 cutting) on the basis of year-on-year target (indicators) achieved Analysis of budget: district budget (where available) & Flagship schemes, to identify allocation for climate action (both Mitigation & Resilience) using CPEIR methodology District specific sectoral recommendations based on the findings of emission profile and situation and policy 	 SDG 8: Decent Work & Economic Growth SDG 9: Industry, Innovation & Infrastructure
Recommenda tions	 analysis Indicating a timeline (to achieve the recommendations), identifying schemes/ programs and departments/Agencies for implementation of proposed measures and linking with SDGs Recommendations on district specific concerns as well as recommendations that can be made by District Committee to the State Individual climate action and suggesting Behavioural change communication techniques Proposed monitoring & evaluation plan and an institutional set-up 	 SDG 11: Sustainable Cities & Communities SDG 12: Responsible Consumption & Production SDG 13: Climate Action SDG 17: Partnerships for the Goals
Impacts of COVID 19	 Changes in electricity and fuel consumption pattern, waste generation & management, migration behaviour, etc. Pre and during COVID-19 comparative study of air pollution 	GUAIS

District Profile

1.1. List of major industries in Bhopal district

	List of large-scale industries (MSME, 2016)
٠	Bharat Heavy Electricals Limited (BHEL).
٠	Railway Coach Rehab. Workshop (Nishatpur)
•	Bhopal Sahakari Dugdh Sangh Maryadit
•	Omega Industries
٠	GEI Industries (Govindpura)
•	Ramani Ice Cream Pvt. Ltd.
٠	Omega Renk Industries (Anand Nagar).
	List of medium scale industries
٠	Shri Cable Pvt. Ltd.
٠	Daulatram Industries
٠	Satyam Industries
•	Adarsh Printing
•	Kochar Glass
•	Righil Industries
٠	Narbada Equipment
٠	Leelasons Breweries
٠	Copper Strips
٠	M P Cupro Metals Pvt. Ltd.
٠	Sigma Heavy Engineering
•	Parmali Wallace

1.2. Details of MSME units by industry type in Bhopal district

NIC	Types of Industries	Number	Investment
code		of Units	(in Lakh Rs.)
20	Agro based (food products)	5	243
22	Soda water	5	40
23	Cotton textile	1	200
24	Woollen, silk & artificial thread-based clothes	-	-
25	Jute & jute based	27	54
26	Ready-made garments & embroidery	2000	1050
27	Wood/wooden based furniture	900	450
28	Paper & paper products	9	1560
29	Leather based	16	26
30	Rubber, plastic & petro based	20	740
31	Chemical/chemical based	6	3029
32	Mineral based	5	33
33	Metal based (steel fabrication)	90	4391
35	Engineering units	626	1723
36	Electrical machinery and transport equipment	22	4504
97	Repairing & servicing	1472	29
	Others	5778	180
	Total	10982	18252

1.3. Estimation of emissions from electricity consumption by industry & agriculture sector	1.3.	Estimation of	emissions from	electricity co	nsumption by	industry &	agriculture sector
--	------	---------------	----------------	----------------	--------------	------------	--------------------

Sector	Electricity Consumptio n (EC) in 2018 (in Million	% of Electricity that comes from coal (based on	EC that can be attributed to coal (in Million Units)	Grid Emission Factor (National avg.) in kg	Emissions (Mt of CO ₂ e)	Emissions (tonnes of CO ₂ e)
	Units)	State electricity mix)	C = (A x B) /100	of CO₂/kWh	E = (C x D)/10^3	F = E x 10^6
Industry	364.69	79.78	290.95	0.86	0.25	250216.73
Agriculture	651.18		519.51		0.45	446779.81

1.4. Livestock Population by categories of Bhopal District¹

Livestock Category	Population (in 2012)
Cross Bred Cattle	20,658
Indigenous Cattle	89,434
Buffaloes	83,655
Sheep	17,819
Goats	1,44,017
Pigs	1,454
Horses & Ponies	1,270
Donkeys	1,6640
Camels	837
Others	10

¹ Department of Animal Husbandry and Dairying, 19th Livestock census: http://dahd.nic.in/documents/statistics/livestock-census

Climate Profile and Projections

2.1. Background Note

Global warming has significant impacts on the changes in extreme weather and climate events. The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) confirms that the increasing anthropogenic greenhouse gas (GHG) concentrations which are responsible for the unusual warming of the planet in recent decades, cause the frequent high intensity temperature/precipitation extremes with prolonged duration affecting the living and working environments. These changes are reported to have impact on the social and economic sectors of the society (IPCC 2013). Numerous studies highlighted the increase of temperature and precipitation extremes with high regional variations across the globe. The recent decade has witnessed a high number of extreme precipitation events such as floods/droughts in different parts of the world. Though there is a decrease in annual precipitation, heavy/extreme precipitation events have increased substantially in many regions of the world.

High-resolution modelling or downscaling of general circulation models (GCMs) to higher resolution is essential to obtain the future extremes and their variability under global warming. A key advantage of high-resolution regional climate simulations is their demonstrated the capability of showing the mean as well as extreme temperature and precipitation events. In this report, the daily rainfall and minimum and maximum temperature from National Aeronautics and Space Administration (NASA) Earth Exchange Global Daily Downscaled Projections (NEX-GDDP, Thrasher et al. 2012) dataset has been evaluated with India Meteorological Department (IMD) high-resolution daily gridded rainfall data (0.25° x 0.25°, Pai et al. 2015) and daily gridded maximum and minimum temperature data (1° x 1°, Srivastava et al 2014) for the period 1976–2005 and the possible future changes in mean and various indices of extreme temperature and precipitation have been examined under two emission scenarios RCP4.5 and RCP8.5. The analysis is focused on the distribution of temperature and precipitation changes for baseline period and its future scenarios for 2030s (2021-2050), 2050s (2041-2060),2070s (2061-2080) and 2090s (2081-2100). It will help policy makers to quantify the potential impacts of extreme events and enable the formulate appropriate adaptation strategies.

2.2. Data Source and Methodology

The NEX-GDDP datasets $(0.25^{\circ} \times 0.25^{\circ} \log/lat)$ covering the entire globe, bias corrected, highresolution statistically downscaled product, derived from 20 general circulation models (GCMs), under the coupled model inter-comparison project phase 5 (CMIP5), and across two greenhouse gas emissions scenarios of RCP4.5 and RCP8.5 have been used in this analysis. This dataset is mainly generated by using the bias-correction spatial disaggregation (BCSD) method (Wood et al. 2004; Thrasher et al. 2012). These NEX- GDDP datasets include downscaled projections for precipitation and minimum and maximum surface air temperature for the 20 models (Table 1). The present-day simulations are for the period 1950 to 2005 for each experiment, and future projections from 2006 to 2100 for two scenarios RCP4.5 (mid-range emissions) and RCP8.5 (high-end emissions).²

The NEX-GDDP dataset helps to carry out studies on the aspects of climate change and their impacts at local to regional scales. In this present work, we have used the multi-model mean (MMM) approach to investigate the comparison between observational dataset (IMD) and of the NEX-GDDP simulations

² NASA Centre for Climate Simulation: https://www.nccs.nasa.gov/services/climate-data-services

in the baseline period. The advantage of using the MMM is that it usually outperforms any individual model and averages out internal variability.

The present study investigates the projected changes in mean and extreme temperature and precipitation events over south peninsular India for different time slices with reference to baseline period (1976–2005). The projected changes in precipitation extremes, such as rainy days (a day with precipitation more than 2.5 mm) and the temperature extremes such as warm days (correspond to cases when the maximum temperature exceeds the 90th percentile) and cold days (correspond to cases when the minimum temperature exceeds the 10th percentile) have been analyzed using these high-resolution datasets.

The observed data was analyzed (over the past 68 years) to study current climate variability over six districts. Precipitation, maximum, and minimum temperature data sets are used as the key climate variables in this analysis.

Modelling Centre (or Group)	Institute ID	Model Name
Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology (BOM), Australia	CSIRO-BOM	ACCESS1.0
Beijing Climate Centre, China Meteorological Administration	BCC	BCC-CSM1.1
Beijing Normal University	BNU	BNU-ESM
Canadian Centre for Climate Modelling and Analysis	СССМА	CanESM2
National Centre for Atmospheric Research	NCAR	CCSM4
National Centre for Atmospheric Research	NCAR	CESM1/CAM5
Centre National de Recherches Meteorologiques / Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique	CNRM-CERFACS	CNRM-CM5
Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland Climate Change Centre of Excellence	CSIRO-QCCCE	CSIRO-Mk3.6.0
NOAA Geophysical Fluid Dynamics Laboratory	NOAA GFDL	GFDL-ESM2G GFDL-ESM2M

Table 1: GCMs of NEX-GDDP dataset³

³ Thrasher et. al. (2012). Hydrol. Earth Syst. Sci. ., https://hess.copernicus.org/articles/16/3309/2012/

Modelling Centre (or Group)	Institute ID	Model Name
Institute for Numerical Mathematics	INM	INM-CM4
Institut Pierre-Simon Laplace	IPSL	IPSL-CM5A-LR IPSL-CM5A-MR
Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and National Institute for Environmental Studies	MIROC	MIROC-ESM MIROC-ESM-CHEM
Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology	MIROC	MIROC5
Max Planck Institute for Meteorology	MPI-M	MPI-ESM-LR MPI-ESM-MR
Meteorological Research Institute	MRI	MRI-CGCM3
Norwegian Climate Centre	NCC	NorESM1-M

Climate Change Drivers

3.1 About Greenhouse Gas Emissions Inventorization

An emissions inventory that identifies and quantifies a region's primary anthropogenic sources and sinks of greenhouse gases (GHGs) is essential; it is the first step in planning the mitigation and adaptation mechanisms for climate action of that region. In order to present the baseline scenario and trends in emissions of Bhopal district, an emission (GHG) profile has been prepared. This exercise not only helps to identify the climate change drivers but also the mitigation potential of each sector/category. A comprehensive inventory would be beneficial for the district in the following ways:

- Decision makers will get insights to create strategies and policies for emission reductions and to track the progress of those policies
- Regulatory agencies and corporations can use the inventory to establish compliance records with allowable emission levels
- Research institutes and local universities can develop future projections/emission models using this data set
- Businesses, public and other interest groups/stakeholders can use the inventory to better understand the sources and trends in emissions

This Action Plan estimates greenhouse gas (GHG) emissions for Bhopal district using the guidelines laid down by the Intergovernmental Panel on Climate Change (IPCC)⁴. Estimates have been done for 12 categories covering three major sectors: Energy, Agriculture, Forestry and Other Land Use (AFOLU), and Waste for the years 2005 to 2019⁵. Though, Bhopal has some industrial units that fall under the Industrial Processes and Product Use (IPPU) sector but due to unavailability of activity data (industry category wise production details) emissions from IPPU sector could not be accounted. However, energy used in industries and the corresponding emissions are reported in the energy sector.

The quality and credibility of GHG inventories rely on the integrity of the methodologies used, the completeness of reporting, and the procedures for compilation of data. As followed at the national level for preparing National Communications (NATCOMs) and Biennial Update Reports (BURs), this action plan has also adopted the Guidelines for National Greenhouse Gas Inventories laid down by the Intergovernmental Panel on Climate Change (IPCC). Mostly, the 2006 IPCC Guidelines were followed, and for a very few categories the 1996 IPCC guidelines were referred. Attempts were made to estimate emissions with higher tier (from the methodological hierarchy given in the three-tier approach of IPCC Guidelines). Furthermore, wherever possible country specific emission factors (from the two NATCOMs, INCCA Report and the two BURs)⁶ were used in place of default emission factors. To

⁴ The 2006 IPCC Guidelines were followed to the extent possible; and for a very few categories the 1996 IPCC guidelines were referred. Background note on GHG Inventorization and its significance is given in Annexure 3.1

⁵ 2017, 2018 and 2019 estimates are done by applying CAGR on the latest possible GHG calculations for each category (based on availability of activity data)

⁶ India's First National Communication to the UNFCCC, 2004; India's Second National Communication to the UNFCCC, 2012; Indian Network for Climate Change Assessment - INCCA's 2010 Report 'India: Greenhouse Gas Emissions 2007'; India's First Biennial Update Report to the UNFCCC, 2016; and India's Second Biennial Update Report to the UNFCCC, 2018

understand the regional dynamics and to make appropriate methodological assumptions in absence of specific activity data/inputs, sectoral expert inputs as well as the work of Greenhouse Gas Platform India (GHGPI) and its sectoral methodology notes were also referred.

3.2 Sources of Activity Data Used in Bhopal's GHG Emissions Inventory

The activity data was sourced from government approved data sets for all the sectors. Emission category wise sources of activity data is listed in the following table.

Sector	Category	Source of Activity Data	
Energy Transport		Petroleum Planning & Analysis Cell (PPAC)	
	Manufacturing Industries		
	Residential		
	Agriculture		
	Commercial		
Agriculture,	Rice Cultivation	APY Statistics from 1) Farmers' Welfare and	
Forestry and Other	Crop Residue Burning	Agricultural Development Department,	
Land Use (AFOLU)		Government of Madhya Pradesh	
	Urea Fertilization	Fertilizer Association of India	
	Enteric Fermentation	Livestock Census of India-19 th (2012); 18 th	
		(2007); and 17 th (2003)	
	Forest Removals	State of Forest Report-2019; 2017; 2015; 2013;	
		2011; 2009; 2005; 2003 by Forest Survey of	
		India	
Waste	Municipal Solid Waste	Census Data, MPPCB Annual Reports, BMC,	
	Domestic Wastewater	СРСВ	
Carbon Footprint	Carbon Footprint of Electricity	Madhya Pradesh Electricity Regulatory	
of Electricity Con.	Consumption	Commission	

Policy Impact Evaluation from a Lens of Climate Change

4.1. Climate Impact Evaluation of	f Policies/Programmes in Power	& Energy Sector
-----------------------------------	--------------------------------	-----------------

Policy/Scheme Name	Indicators	Calculation methodology	Emissions avoided/mitigated	Information
MP Solar Policy, 2012		methodology	avoided/initigated	gaps
MP Policy for Decentralized Renewable Energy systems,2016 Surya Rooftop Yojana	Solar Power Installed capacity during the policy period.	GHG emissions mitigated = Installed capacity of solar ground/rooftop in the year of interest x Number of light days ⁷ x	1,54,800 tCO₂e emissions are mitigated annually.	Year on year data is not available for Bhopal, since inception of the policies.
Madhya Pradesh Policy for Net- Metered Renewable Energy Applications, 2016		Hours of operation per day ⁸ x Plant Load factor of the solar plant ⁹ × All India grid emission factor (Net) in the year of interest ¹⁰		
Waste to Energy, 2016	Electricity generated by Waste to Energy Plants during the policy period.	GHG emissions avoided = Electricity generated by W2E plants x All India grid emission factor.	56,313 tCO ₂ e emissions are avoided by W2E plants annually.	Year on year data is not available for Bhopal, since inception of the policy.
UJALA Scheme,2015	Number of LED Bulbs, tube-lights and energy efficient fans distributed in the district during the period.	GHG emissions avoided = No. of LED bulbs sold in the year of interest × Difference in Wattage between incandescent and	Total CO ₂ Emissions avoided = 1,99,869 tCO ₂ e	Year on year data on number of UJALA LEDs distributed and number of LED streetlamps

⁷ Number of light days considered for Solar energy, per year= 300

⁸ Number of hours of operation per day= 24 hours

⁹ PLF for Solar Plants =17%

¹⁰ All India Grid Emission factor = 0.86 Kg/kWh

Policy/Scheme	Indicators	Calculation	Emissions	Information
Name		methodology	avoided/mitigated	gaps
		LED bulbs ¹¹ × Annual hours of usage ¹² x Net Grid emission factor		installed in the district, is not available;
Streetlight National Programme (SLNP), 2015	Number of LED street Bulbs installed in the district during the period.	GHG emissions avoided = No. of LED bulbs installed in the year of interest × Difference in Wattage between sodium vapor and LED bulbs ¹³ × Annual hours of usage ¹⁴ x Net Grid emission factor	Total CO ₂ Emissions avoided= 3,054 tCO₂e	Year on Year data since the inception of Scheme
Integrated Power Development Scheme (IPDS)/Restructured Accelerated Power Development and Reforms Programme (R-APDRP) / UDAY Scheme,2015	T&D Loss during the policy period.	GHG emissions avoided= $\sum_{2015-2019}$ Electricity generation avoided with Transmission & Distribution (T & D) loss improvement in the year of interest × All India grid emission factor (net) in the year of interest	Total emissions avoided = 5,38,000 tCO ₂ e	None

¹¹ Wattage of an incandescent bulb= 60W; Wattage of an LED bulb= 9W

¹² Annual Hours of usage= 10 x 365= 3650 hours

 $^{^{13}}$ Wattage of a sodium vapor lamp= 150W to 250 W (200 W average is being used); Wattage of an LED street lamp = 70 W

¹⁴ Annual Hours of usage= 12 x 365 = 4380 hours

Policy/Scheme	Indicators	Calculation	Emissions	Information
Name		methodology	avoided/mitigated	gaps
PAT (Perform, Achieve and Trade) Scheme	AT&C Loss reduction during the policy period (for DISCOMS) Reduction in specific energy consumption (for other industries)	GHG emissions avoided = (Specific energy consumption (TOE) during the base year of PAT cycle-Specific energy consumption (TOE) during the assessment year of PAT cycle) x (Product output (Tonnes) x Conversion factor ¹⁵ (TOE to MtCO ₂)	Total emissions avoided in the district through PAT Scheme = 4,804 tCO ₂	None
BRTS Bhopal	Shift in modal share of transport between Before BRTS and After BRTS.	GHG Emissions avoided = ∑2011- 2019 (Population × Trips × Modal share of the particular vehicular category without BRTS × EF) - (Population × Trips × Modal share the particular vehicular category with BRTS × EF)	Total emissions avoided = 1,17,345 tCO ₂	Annual utilization factor of vehicles is required for the particular region and for the current analysis, national values have been used.

¹⁵ 1 TOE = 11630 kWh (As per International Energy Agency)

4.2. Climate Impact Evaluation of Policies/Programmes in Agriculture, Forestry & Other Land Use

Policy Name	Indicators	Calculation Methodology	Emissions Mitigated/ Avoided/ Added	Information gap, if any
Gair Van Bhoomi par Vrikshropan Neeti	Increase in green cover due to this initiative	Addition to C-sink (t CO ₂ e.) = Area covered *carbon stock density*(-44/12) ¹⁶	Scenario 1 ¹⁷ : 48,099 t CO₂ avoided Scenario 2: 5,356.83 t CO₂ avoided	None
Diversion of forests for non- forest purpose under the Forest Conservation Act, 1980	Loss of carbon sink due to reduction in forest area	Loss in carbon sink= Area diverted*carbon stock density*44/12	Emissions added: Scenario 1 = 46,334.31 t CO ₂ e added Scenario 2 = 5,160.3 t CO ₂ e added	Annual district level data on diversion of forest area
Wildlife Protection Act, 1972	Maintenance of CO ₂ removals capacity of the terrestrial ecosystem	Add. to C-sink (t CO₂e.) = Area covered *carbon stock density*(-44/12)	Scenario 1: 1,46,507.35 t CO₂ avoided Scenario 2: 16,316.67 t CO₂ avoided	None

¹⁶ Where 44/12 is used to convert from carbon mass to CO2 emissions;

¹⁷ Scenario 1- Carbon Stock density is 89.79 tonnes/ha (as given in the FSI Reports for the state of MP). Scenario 2- Carbon stock density is 10 tonnes/ha (specific to Bhopal District; as suggested by MP Forest Officials)

Policy Name	Indicators	Calculation Methodology	Emissions Mitigated/ Avoided/ Added	Information gap, if any
Breed Improvement Programme	Improved productivity of cross-bred cattle is likely to reduce or keep the emissions constant Assumption: Total number of indigenous and crossbreed cattle have been attributed to this policy from the year 2000	 Estimating milk produced by crossbreed cattle= No. of crossbreed *yield Estimating number of indigenous cattle required to produce aforementioned quantity of milk Calculating Enteric fermentation emissions & manure management emissions for both crossbreed and indigenous cattle The difference between these two emissions are the emissions added or avoided 	Total emission avoided 4,325.73 tCO ₂ e	None
Vats Paalan Protsahan Yojana	Improved productivity of cross-bred cattle is likely to reduce or keep the emissions constant	 Total emissions= calves born*emission factor 	Calculations could not be done due to data gap	Specific Number of calves born through this scheme in Bhopal is needed
Soil Health Card Scheme	Improve the nutrient proportion of the soil in order to reduce the usage of the fertilizers	Emissions avoided= Reduction in fertilizer use (kg) *emission factor	Calculations could not be done due to data gap	The specific data inputs that are required to make such a judgment include, in our opinion: 1. Actual Area covered under the scheme 2. Reduction in the fertilizer usage due to the scheme
National Food Security Mission	Increase in N ₂ O emissions due to increase in nitrogen fixing	Dry Bio Mass=Production*Dry Biomass Factor Nitrogen in the Nitrogen Fixing Crops=Dry Bio	Emissions added = 20,431.46 t CO ₂ e.	Percentage of pulses production that can be

Policy Name	Indicators	Calculation Methodology	Emissions Mitigated/ Avoided/ Added	Information gap, if any
	(Pulses) crop production	Mass*Fraction of Nitrogen in Nitrogen Fixing Crops		attributed to NFSM.
		Direct N ₂ O=Nitrogen*Emission Factor for direct emission CO ₂ Equivalent= N ₂ O*310		

4.3. Climate Impact Evaluation of Policies/Programmes in Cross-Cutting: Agriculture

& Power				1
Policy	Indicators	Calculation	Emissions	Information
Name		Methodology	Mitigated/Avoided/Added	gap, if any
National	Enhancement	Total emissions	911.12 tCO₂e (due to	None
Mission	of the water	(MtCO ₂ e) = Total	decrease in use of	
on Micro	use efficiency	fertilizer	fertilizer)	
Irrigation	in a sustainable manner with decline in the use of fertilizers and	consumption*EF of indirect emissions*Fraction of gas loss through volatilized N from Urea application*GWP of		
	electricity	N2O*44/28		
Pradhan Mantri Ujjwala Yojna	Reduction in CO ₂ removals and improve the health of women and children ¹⁸	Total sequestration (tCO ₂ e) = {new LPG connections in Bhopal district (i.e. no. of households)*forest area saved by one household due to reduction in fuel wood consumption*carbon stock density*(-44/12)} - {standard weight of one connection*assuming each connection books	Net emissions savings: Scenario 1 ¹⁹ : 8,47,722 tCO₂e avoided Scenario 2: 87,891 tCO₂e avoided	None

¹⁸ Limitation: We don't know what number of LPG connections actually replaced fuelwood use. Currently it is assumed that 20% of new connections replace fuelwood as the population of rural area in Bhopal is 20% of the total population. It has also been assumed that each connection uses two LPG cylinders per year.

¹⁹ Scenario 1- Carbon Stock density - 89.79 tonnes/ha (as given in the FSI Reports for the state of MP). Scenario 2- Carbon stock density- 10 tonnes/ha (specific to Bhopal District; as suggested by MP Forest Officials)

Policy	Indicators	Calculation	Emissions	Information
Name		Methodology	Mitigated/Avoided/Added	gap, if any
		2 LPG cylinders per year		
		*LPG NCV*CO ₂ EF}		

Policy/Schem	Indicators	Emission	Emissions	Information
e		Estimation	Added/avoided/mitigat	gaps
		Methodology	ed	
		SANITATION		
Total	Number of	F1. Total organic	Annual average GHG	1. Data not
Sanitation	household &	waste (TOW) =	emission of +9,421	available at
Campaign	community/scho	(Population*BOD	tCO₂e. for 216,879 IHHL	public
(Completed:	ol latrines) *0.001*I*365;	latrines and +60,774	domain from
1999-2012)	constructed	F2. CH ₄ = (TOW-S-	tCO ₂ e. for 5,319	1999 to 2005
		R) *EF	community/school	2. District
		Considering	latrines between 2006	level data
		Considering	to 2012.	not available
		Assumptions A1- A5 (Annexure	Emission reduction by	
		4.4.1)	baseline:	
			IHHL: 43%	
			Community latrines:	
			8.7%	
Nirmal Bharat	Number of	F1. Total organic	Annual average GHG	District level
Abhiyan or	household &	waste (TOW) =	emission of +1,151	data not
Clean India	community/scho	(Population*BOD	tCO ₂ e. for 26,494 IHHL	available.
Campaign	ol latrines) *0.001*I*365;	latrines and +893 tCO ₂ e.	
(Completed:	constructed		for 78	
2012-2014)		F2. CH ₄ = (TOW-S-	community/school	
		R) *EF	latrines between 2012	
		Considering	to 2014.	
		Considering Assumptions A2-	Emission reduction by	
		A6 (Annexure	baseline:	
		4.4.1)	IHHL: 43%	
			Community latrines:	
			8.7%	
Swachh	Number of	F1. Total organic	Annual average GHG	District level
Bharat	households,	waste (TOW) =	emission of +804 tCO₂e.	data not
Mission	community &	(Population*BOD	for 18,513 IHHL latrines	available.
Urban	public toilets) *0.001*I*365;	and +6,397 tCO ₂ e. for	
(Ongoing:	constructed		607 community/school	
2014 - till		F2. CH ₄ = (TOW-S-	latrines between 2014	
date)		R) *EF	to 2019/20.	
		Considering	Emission reduction by	
		Assumptions A2-	baseline:	
		A5 (Annexure	IHHL: 43%	
		4.4.1)	Community latrines:	
			, 8.7%	

4.4. Climate Impact Evaluation of Policies/Programmes in Waste Management Sector

Policy/Schem e	Indicators	Emission Estimation	Emissions Added/avoided/mitigat	Information gaps
		Methodology	ed	
Integrated	Number of	F1. Total organic	Annual average GHG	1. Only
Low-Cost	household toilets	waste (TOW) =	emission of +34.28	country level
Sanitation	constructed and	(Population*BOD	tCO₂e. for 789 IHHL	cumulative
Scheme (ILCS)	converted from) *0.001*I*365;	latrines between 2009	data
(Completed: 1960-2014)	dry latrines	F2. CH4= (TOW-S- R) *EF	to 2014.	available for 1960 to 2008
with revision		K) CF	Emission reduction by	(28 lakh
from 2008)		Considering	baseline:	latrines
<i>Jioni</i> 2000/		Assumptions A2-	IHHL: 43%	constructed)
		A5 & A7		2. District
		(Annexure 4.4.1)		level data
		,		not available.
Swachh	Number of	F1. Total organic	Annual average GHG	No data gap
Bharat	household toilets	waste (TOW) =	emission of +3,857	
Mission Rural	constructed	(Population*BOD	tCO₂e. for 88,786 IHHL	
(Ongoing:) *0.001*I*365;	latrines between 2014-	
2014 - till		F2. CH4= (TOW-	2019/20.	
date)		S-R) *EF	manta ta sa sa di suta sub	
		Considering	Emission reduction by	
		Considering Assumptions A2-	baseline: IHHL: 43%	
		A4 (Annexure	INNL. 4570	
		4.4.1)		
Pradhan	Number of	, F1. Total organic	Annual average GHG	No data gap
Mantri Awas	houses	waste (TOW) =	emission of +4,768	
Yojana	constructed	(Population*BOD	tCO₂e. for 13,627 IHHL	
(Ongoing:	(households) *0.001*I*365;	latrines between 2014-	
2015 - till	essentially	F2. CH ₄ = (TOW-S-	2019/20.	
date)	include toilet	R) *EF		
	facility)	Considering	Emission reduction by	
		Considering Assumptions A2-	baseline: IHHL: 8.7%	
		ASSUMPTIONS AZ-	INNL. 0.7 /0	
		(Annexure 4.4.1)		
Integrated	Number of	F1. Total organic	Annual average GHG	No data gap
Urban	households,	waste (TOW) =	emission of +84 tCO ₂ e.	
Sanitation	community &	(Population*BOD	for 1,939 IHHL latrines	
Programme	public toilets) *0.001*I*365;	and +205 tCO ₂ e. for 18	
(IUSP)	constructed		community/school	
including		F2. CH ₄ = (TOW-S-	latrines between 2009-	
Mukhyamantr		R) *EF	2014.	
i Shahari Swachhata		Considering	Emission reduction by	
Swachnata Mission		Considering Assumptions A2-	Emission reduction by baseline:	
(Completed:		ASsumptions A2- A4 (Annexure	IHHL: 43%	
2009 -2014)		4.4.1)	Community latrines:	
		··· - ,	8.7%	
		WASTE MANAGEN		

Policy/Schem e	Indicators	Emission Estimation	Emissions Added/avoided/mitigat	Information gaps
		Methodology	ed	
Solid Waste	 Collection, 		Annual average GHG	No scheme
Management	segregation,	F4. CH ₄	emission of -60,923	wise data
Rules, 2016 &	storage,	emissions from	tCO₂e. was avoided due	available
Amendment	transportation,	biological	to 1,10,960 tonnes of	
2018	processing and	treatment = Σ_{i}	MSW treated	
- Integrated	disposal of	(M _i x EF _i) x 10 ⁻³ -	biologically through	
Solid Waste	municipal solid	R	composting	
Management	waste (MSW)			
Projects	 Amount of 			
(ISWM)	biodegradable	Considering		
- Bhopal	waste processed	Assumptions		
Smart City	through	A12-A13		
Development	composting/verm	(Annexure 4.4.1)		
Corporation	i-composting			
Bio-medical	Bio-medical	F5. CO ₂ emission	Annual average GHG	No data gap
Waste	waste	for the total	emission of -18.15	post 2016
Management	segregation,	amount of waste	tCO ₂ e. was avoided due	
Rules, 2016 &	storage,	combusted = Σ_i	to 323 tonnes of BMW	
Amendment	collection,	(SW _i x dm _i x CF _i x	treated by incineration	
2018	transport & &	FCF _i x OF _i) x		
	disposal	44/12		
	Amount of BMW			
	(yellow waste)			
	incinerated			
	(captive	Considering		
	treatment &	Assumption A14		
	CBWTF)	(Annexure 4.4.1)		
Hazardous &	Amount of	Formula F5 (I =	Bhopal does not have	No data
Other Wastes	hazardous waste	hazardous	any TSDF (Hazardous	available for
(Management	disposed by	waste)	waste treatment facility)	TSDFs
and	incineration as			receiving
Transboundar	part of hazardous			district wise
y Movement)	waste treatment			hazardous
Rules 2016	processes			waste
		WATER: DOMESTIC	& INDUSTRIAL	Γ
National River	Number of STPs	F3. Total Organic	Annual average GHG	Scheme/Polic
Conservation	constructed to	Waste, TOW (kg	emission	y wise data
Plan	reduce river	of BOD per year)	2001-2015: +36,338	not available
	pollution load	=	tCO₂e. for 54.36 MLD	
Jawaharlal	No. of STPs	BOD*0.001*I*36	STP capacities	
Nehru	created for	5;	2008-2015: +2.416	
National	integrated		tCO ₂ e. for 8 MLD STP	
Urban	development of	F2. Annual tCH ₄	capacities	
Renewal	infrastructural	emissions =	1975-2015: +4,096	
Mission on	services in the	(TOW-S-R) *EF,	tCO ₂ e. for 13.56 MLD	
Urban	cities		STP capacities	
Infrastructure		Considering	1959-2015: +1,377	

Policy/Schem	Indicators	Emission	Emissions	Information
е		Estimation	Added/avoided/mitigat	gaps
		Methodology	ed	
and		Assumptions A9-	tCO ₂ e. for 4.56 MLD STP	
Governance		A11 (Annexure	capacities	
		4.4.1)		
			Emission reduction by	
			baseline:	
			2001-2015: 7%	
MP Urban	No. of STPs		For the rest STPs:	
(ADB) Project	constructed for		14.43%	
- Bhopal	sanitation			
	management			
Atal Mission	No. of STPs	Formula F3 & F2	NA	Bhopal is a
for	constructed for	(Annexure 4.4.2)		mission city
Rejuvenation	Sewerage and			but no data
and Urban	septage			available
Transformatio	management			separately
n (AMRUT)				for STPs built
(Ongoing:				under this
2015-till date)				mission
Common	Industry category	Formula F3 & F2	NA	Industry
Effluent	wise Wastewater	(Annexure 4.4.2)		category
Treatment	treated in			wise
Plant (CETP)	different CETPS			wastewater
for Medium &				generation &
Small-Scale				treatment
industries				details not
				available
Online	Industry category	Formula F3 & F2	NA	No public
Monitoring of	wise Wastewater	(Annexure 4.4.2)		domain data
Industrial	treated			availability
Emission &				for the
Effluent				industry
(OCEMS)				category
				wise
				wastewater
				generation,
				treatment
				and
				discharge

4.4.1 List of Assumptions for Policy Impact Evaluation of Waste Sector

Assumption		
No	Assumptions	
A1	Impact estimated for 2006-2012 wherein activity data available	
A2	All new IHHLs constructed are operational and in use	
A3	IHHL constructed are of two-pit pour flush type and community latrine are of	
	septic tank type.	

A4	Baseline: In the absence of IHHLs the wastewater is assumed to be discharged in		
	water bodies (43.3%) and land (56.7%) as sourced for Madhya Pradesh		
A5	No. of latrines constructed in the district were determined @ of %household share		
	of districts to that of the state.		
A6	Impact estimated for 2012-2014		
A7	Impact estimated for 2009-2014		
A8	IHHL constructed are of septic tank type		
A9	Impact estimated for all STPs constructed and operational between 1959 to 2015		
	wherein aggregate activity data is available for across schemes as an STP inventory		
	as reported		
A10	Wastewater treated in aerobic system is considered to be 'not well		
	managed/overloaded'		
A11	In the absence of STPs installed the untreated wastewater is assumed to be		
	discharged in water bodies (43.3%) and land (56.7%) as applicable for Madhya		
	Pradesh		
A12	Impact emission estimated for 2017-2018 wherein the data available for organic		
	waste treatment		
A13	Considered as a policy impact of SWM Rules 2016 for activities implemented		
	across schemes/projects		
A14	Impact emission estimated for 2016-2019 wherein the data available for hospital		
	waste treatment by incineration		

4.4.2 Extension of Formula F1 to F5 in the Policy Impact Evaluation of Waste Sector

Extension of Formula-	Population is the total number of toilet users per day, BOD per capita per day and		
F1	I is the correction factor for additional industrial BOD discharged into sewers		
Extension of Formula-	ula- S = Organic component removed as sludge and R = Amount of CH ₄ recovered, in		
F2	the estimation year and EF = Emission Factor		
Extension of Formula-	BOD = Capacity of STP (MLD)*10^6 (conversion to L) *198 mg/L (BOD of domestic		
F3	wastewater) *10^-3 (conversion to g/L), I = Correction factor for additional		
	industrial BOD discharged into sewers		
Extension of Formula-	Mi = mass of organic waste treated by biological treatment type; EFi = Emission		
F4	factor for treatment I; i = composting or anaerobic digestion; R = total amount of		
	CH ₄ recovered in inventory year		
Extension of Formula-	SWi = total amount of solid waste of type i (wet weight) incinerated or open-		
F5	burned; dmi = dry matter content in the waste (wet weight) incinerated or open-		
	burned; CFi = fraction of carbon in the dry matter (total carbon content); FCFi =		
	fraction of fossil carbon in the total carbon; OFi = oxidation factor; i = type of		
	waste: bio-medical waste		

Budgetary Analysis to Estimate Expenditure towards Climate Action

5.1. Overview of Budgetary Analysis

Rationale

Countries across the world have realized the need to translate their international commitments to the United Nations Framework Convention on Climate Change (UNFCCC) into national policies and action plans. They are also focussing towards understanding the responsiveness of their policies to climate change as well as their impacts on ground. There is increased public scrutiny and demand for accountability to demonstrate the impacts of budgetary allocations and spending, particularly on poor and vulnerable groups. Thus, it has become extremely important to track and report financial flows that support climate change mitigation and adaptation, to build trust and accountability with regard to climate finance commitments and monitor trends and progress in climate related investment.

Through its ambitious NDC targets and the subsequent policies rolled out to fulfil them, the Government of India has prioritized the financing requirements of climate change interventions. Owing to the federal structure, the onus of climate change efforts in India filters down to state and local governments.

Therefore, an understanding of the financial flows and allocations at state and district levels can enable a better understanding of the extent and impact of climate action on ground. Further, many activities which address climate change (mitigation and resilience) and are aligned with climate SDGs are already included in national and state budgets but are rarely explicitly referenced or categorized as such. Identification of these actions can further help authorities streamline climate action at local level.

Objectives

The primary objective of this exercise is to examine the budgetary allocations to climate change mitigation and resilience measures at district level.

The exercise will Identify of on-ground climate relevant actions at district level and analyse expenditure on the climate action aimed at mitigation and resilience as well as aligning with climate relevant Sustainable Development Goals (SDGs).

Outcomes

The analysis for budgetary allocations to climate action at the district level will

- Help in the identification of gaps and overlaps in the information available on district level expenditures on schemes and programmes aligned with climate action goals.
- Strengthen climate action at district level by supporting district administration in identifying existing programmes with climate relevant activities.
- Support in the development of relevant recommendations to district authorities to accelerate climate-oriented actions at district level, such as
 - Integration of district development priorities with climate change mitigation and resilience priorities and streamlining of funds for the same.

Improving coordination between various line departments, state, and central ministries to better manage public spending and investments in line with key national and state climate policy intentions.

5.2. Budgetary Analysis Methodology

Methodology

The methodology developed for analysis of district level expenditure is based on the public financial management segment of 'The Climate Public Expenditure and Institutional Review (CPEIR): a methodology to review climate policy, institutions and expenditure'.

The approach, championed by UNDP, builds on the World Bank's Public Expenditure Reviews (PERs) and aims to equip policymakers with a tool to analyse the allocation of public resources, both domestic and international.

Assumptions

'Actuals' for any year are considered as actual expenditure on a particular scheme

Two kinds of relevance criteria have been considered

• Relevance of scheme to climate

The CPEIR involves a review and analysis of three main areas with regard to climate change:

- Policy: The scope and comprehensiveness of climate policy at the national and sub-national level, within the sectors and the degree to which the policies are prioritized, costed or sequenced.
- Institutions: The institutional nexus related to climate policy delivery and the modes of cross government synchronization, accountability and decentralization.
- Finances: The proportion of public expenditure relevant to the distribution of it across sectors, the national/sub-national split and in some cases, proportion domestically/externally funded.
- mitigation or resilience based on its ability or future ability to address climate change by understanding the objectives and activities under each scheme direct, indirect, marginal and potential
- Relevance of scheme to climate mitigation and/or resilience based on budgetary allocation within the scheme i.e., how much of the budget under a scheme is allocated to climate relevant activities

The following steps were undertaken for review and analysis of district level expenditures:

- 1. **Review of available data** exhaustive literature review was conducted to identify district level information available from state government resources and flagship scheme portals. For missing information, respective departments or district officials were contacted to collect budget details
- Sources of funds at district level based on literature and inputs from district authorities, the various sources of funds for the identified schemes and programmes were identified. This exercise will help in developing recommendations to improve budgetary allocation to climate action.
- 3. **Define boundary** For this exercise, due to limitation on data availability and uniformity, certain boundary conditions were applied to have a consistent analysis. The table below lists the sources referred for each state and scheme analysed

State/Scheme	Source	Assumptions
Maharashtra (Pune,	Planning Department (Annual	'Actuals' in the budget
Nagpur)	District Budgets)	considered actual expenditure
		for a particular year
Gujarat (Ahmedabad,	**Not available yet	'Allocations' in the budget
Pune)	District expenditure under	considered actual expenditure
	schemes from respective	for a particular year
	websites	
Madhya Pradesh (Bhopal,	**Not available (yet)	'Allocations' in the budget
Indore)	District expenditure under	considered actual expenditure
	schemes from respective	for a particular year
	websites	

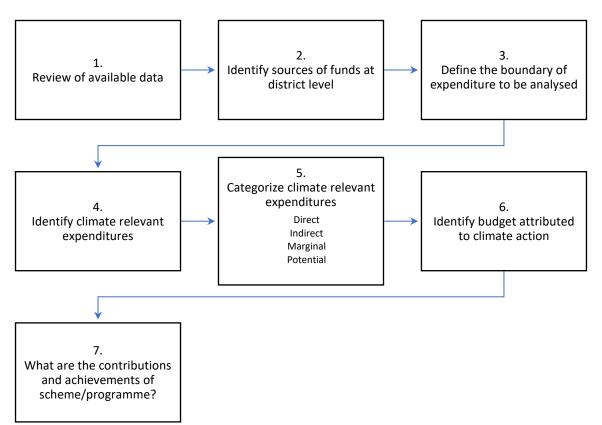


Figure 3: District expenditure review and analysis methodology

- 4. **Identify climate relevant expenditures** the subheads were selected on the basis of their relevance to climate action heads corresponding to sectors of water, sanitation, rural and urban development, forestry, energy, and agriculture were selected.
- 5. **Categorize expenditures** the objectives and activities undertaken in the shortlisted schemes and programmes were reviewed to understand their outcomes, impacts and potential vis-à-vis climate action. Based on the extent of climate action, the categorization criterion was as shown in Table 2.
- 6. **Identify budget attributed** based on the categorization done in the previous step, an internal discussion was undertaken to assign per cent budget attribution to climate action for each scheme. Further analysis was undertaken to understand expenditure trends.
- 7. Achievements of the scheme/programme Further, based on the impacts, the schemes and programmes were categorized under Mitigation (M), Resilience building (R) or both (M+R).

Category vis-à- vis climate action	Rationale	% Budget attributed to climate action
Direct	Scheme and programmes whose principal objectives, activities and outcomes have direct climate resilience and mitigation implications or are aligned with climate SDGs.	70 to 100
Indirect	Schemes and programmes which have significant climate components in terms of activities and outcomes building climate resilience, climate mitigation and/or climate SDG co-benefits. However, the objectives do not have climate action as a primary objective.	35 to 69

Table 2: Categorization of climate actions

Category vis-à- vis climate action	Rationale	% Budget attributed to climate action
Marginal	Schemes and Programmes that have some small number of indirect climate mitigation and/or resilience co-benefits and have scope for including more climate-oriented actions	1 to 35
Potential Schemes and programmes which currently have no climate implication, however, have been identified to have scope for including climate-oriented development activities in the future.		0

5.3. Analysis of schemes at district level

A total of 39 schemes, as listed below, were reviewed to identify those with climate resilience and mitigation relevance. Of these, based on availability of information across districts as well as relevance to climate actions, five schemes were selected for further analysis.

1	MGNREGA	20	Integrated Child Development Scheme (ICDS)
2	Deen Dayal Antyodaya Yojana – NRLM	21	Pradhan Mantri Ujjwala Yojana
3	Deen Dayal Upadhyaya – Grameen Kaushal Yojana	22	Pradhan Mantri Kaushal Vikas Yojana
4	Pradhan Mantri Gram Sadak Yojana	23	Digital India – Public Internet access programme
5	National Social assistance Programme	24	Infrastructure related programmes like telecom, railway, highways, waterways, mines etc
6	Pradhan Mantri Awas Yojana – Urban and Rural	25	Pradhan Mantri Khanij Kshetra Kalyan Yojana
7	SBM – Urban and Rural	26	Integrated Power Development Scheme
8	PMKSY	27	Non-Lapsable Central Pool of Resources scheme
9	Integrated Watershed Management Programme	28	RKVY
10	Digital India Land Records Modernization Programme	29	Soil Health Card
11	Deen Dayal Upadhyay Gram Jyoti Yojana	30	E-National Agriculture Markets
12	Shyama Prasad Mukherji National Rurban Mission	31	Green India Mission
13	Heritage City Development and Augmentation Yojana	32	Accelerated Irrigation Benefit Programme
14	AMRUT	33	Command Area Development and water Management Programme
15	Smart Cities Mission	34	Pradhan Mantri Adarsh Gram Yojana
16	Pradhan Mantri Fasal Bima Yojana	35	Prime Minister's Employment Generation Programme
17	National Health Mission	36	Sugamya Bharat Abhiyan
18	Sarva Shiksha Abhiyan	37	Beti Bachao Beti Padhao
19	Mid-Day Meal Scheme	38	National Food Security Act
		39	Other schemes

MGNREGS

Ministry of Rural Development (MoRD) lists 17 major categories of activities performed under MGNREGS²⁰. Out of these, 11 can be attributed to be acting on climate change, categorised as mitigation specific, resilience specific or both (see Table 3).

S.No.	Category of Works	Type of climate
		impact
1	Anganwadi/Other Rural Infra	Not Relevant
2	Bharat Nirman Rajiv Gandhi Sewa Kendra	Not Relevant
3	Food Grain	Not Relevant
4	Other Works	Not Relevant
5	Playground	Not Relevant
6	Works on individual land (Category IV)	Not Relevant
7	Coastal areas	R
8	Drought Proofing	R
9	Fisheries	R
10	Flood control and Protection	R
11	Land Development	R
12	Micro Irrigation works	M+R
13	Renovation of Traditional water bodies	M+R
14	Rural Connectivity	R
15	Rural Drinking water	M+R
16	Rural Sanitation	R
17	Water conservation and water harvesting	M+R

Table 3: Categories of works under MGNREGS

Only the activities, for which work has been completed or is under progress, have been included in the budgetary apportioning. Since the daily wages are independent of the work being done, we can safely attribute the district budget for the year to each activity, depending on the number of works performed in the year under consideration.

- % Budgetary spending (on a particular activity) = (Expenditure on the particular activity/State MGNREGS budget expenditure) *100
- Expenditure on a particular activity= (Number of works (completed + under progress) under the activity/ Total works done under MGNREGS in the district) *State Budget

²⁰ The Mahatma Gandhi National Rural Employment Guarantee Scheme (MGNREGS) was enacted in 2005 and seeks to improve the rural infrastructure, augment land and water resources, and strengthen the livelihood resource base of the rural poor by providing at least one hundred days of guaranteed wage employment in a financial year to every household whose adult members are willing to do unskilled manual work.

PMKSY

PMKSY²¹ lists district-wise, number of works done under micro-irrigation, each year. Similarly, PMKSY also lists the number of works done in the whole state in a particular year. This can help us to apportion the percentage of micro-irrigation works performed in a particular district, of the whole state. Also, since we are provided with the State budget for the micro-irrigation activities performed under PMKSY, we can derive the district budgetary spending by multiplying the State budgetary spending with the percentage calculated above. Further, based on categorization vis-à-vis climate action, the scheme has been identified as an 'Indirect' category scheme, as although its primary objective is not climate resilience, yet the activities have many climate co-benefits.

- Budgetary spending on micro-irrigation activities= (Number of works done in a district in a particular year/ Number or works done in the state the same year) * State Budgetary Expenditure for the year.
- Budgetary spending that can be attributed to climate action= (Budgetary spending on Microirrigation x 0.69)
- 69% is the budget attributed for activities with indirect climate benefits

Green India Mission (GIM)

Launched in February 2014 by the Ministry of Environment, Forests and Climate Change, Green India Mission aims at increasing the green cover of a State/District under various Sub-missions, as stated below:

- 1. Enhancing quality of forest cover and improving ecosystem service.
- 2. Ecosystem restoration and increase in forest cover.
- 3. Enhancing tree cover in urban and peri-urban areas (including institutional lands).
- 4. Agro forestry and social forestry (increasing biomass and creating carbon sink).
- 5. Restoration of wetlands.
- 6. Promoting alternative fuel energy.

Since the activities performed under GIM have a direct impact towards mitigating climate change, 100% of budget allocated to the district can be attributed to climate action.

However, an assumption has been made while proportioning the budget to the district. GIM provides budget allocation on the basis of Forest Division/Circle, hence, the district budget has been calculated by apportioning the budget for the Division/Circle on the basis of forest cover in each of the districts falling under that particular Division/Circle.

AMRUT

The AMRUT mission has been identified as a programme that indirectly supports climate action. The activities performed under the mission can be broadly categorized into five sectors:

- 1. Water supply
- 2. Sewage and septage management
- 3. Stormwater drainage
- 4. Green space development

²¹ The major objective of PMKSY is to achieve convergence of investments in irrigation at the field level, expand cultivable area under assured irrigation, improve on-farm water use efficiency to reduce wastage of water, enhance the adoption of precisionirrigation and other water saving technologies (More crop per drop), enhance recharge of aquifers and introduce sustainable water conservation practices by exploring the feasibility of reusing treated municipal waste water for peri-urban agriculture and attract greater private investment in precision irrigation system.

Programme architecture of PMKSY is to adopt a 'decentralized State level planning and projectized execution' structure that will allow States to draw up their own irrigation development plans based on District Irrigation Plan (DIP) and State Irrigation Plan (SIP).

5. Urban transport

As per the methodology applied in the district budgetary analysis, 50% of the budget approved for Water supply could be attributed to climate action. Similarly, the figures stand at 60% and 60% for Sewage & Septage Management and Green Space Development, respectively.

 Budget attributed to Climate Action = (Approved budget for the particular activity x Physical progress (%) x Percentage allocation viz-a-viz climate action)

Deen Dayal Upadhyay Gram Jyoti Yojana (DDUGJY) and Saubhagya Scheme

11 major activities are carried out under DDUGJY and Saubhgya Yojna, implemented by the Ministry of Power, GOI. These are:

- 1. Installing New substations
- 2. Augmentation of existing substations
- 3. Installing DTRs
- 4. Laying LT Lines
- 5. Installing 11KV feeders
- 6. Installing 33/66 KV feeders
- 7. Feeder Segregation
- 8. Works done under Sansad Adarsh Gram Yojna (SAGY)
- 9. Consumer Metering
- 10. DTR metering
- 11. Feeder metering

Out of these activities 6 activities directly support climate action, hence 50% of the budget can be attributed to climate action.