1. The next 15 years is critical for the clean energy transition

Climate performance off track: next 15 years critical

GHG emissions projections

Source: IPCC

The Global Commission on the Economy and Climate

Fossil fuel reserves exceed the carbon budget

emissions of conventional and likely unconventional fossil fuel reserves vs. the remaining CO2 budget for given probabilities of staying below 2°C above pre-industrial levels. Budgets are adjusted for likely non-CO2 emissions. Resource estimates are much greater, particularly for coal (30,000-40,000 Gt for coal, 2,000-5,000 Gt for gas, and 1,000-1.500 Gt for oil). Estimates for unconventional gas are highly uncertain, with little agreement on what resources are appropriately

SOURCES: Sources: For carbon budgets: IPCC, 2013; fossil fuel reserves shown are ranges for mid-point estimates of a range of different sources, including BGR, 2013; BP, 2014; IEA, 2013;

Source: ODI analysis of data from Shearer, Ghio, Myllyvirta & Nace. 2015. Tracking the Global Coal Plant Pipeline. Sierra Clabt

THE NEW CLIMATE ECONOMY

The Global Commission on the Economy and Climate

3

Source: IPCC Working Group I; IIASA Global Energy Assessment 2012, BGR, 2013; BP Statistical Review of World Energy, 2014; IEA, 2013; World Energy Council, 2013

OECD coal still consumes most of the CO2 budget, and addition of China and India's coal bursts it

THE NEW CLIMATE ECONOMY

The Global Commission on the Economy and Climate

Source: The Overseas Development Institute analysis of data from *Shearer, Ghio, Myllyvirta & Nace. 2015. Tracking the Global Coal Plant Pipeline. Sierra Club.*

The costs of solar and wind energy have plumeted

Note: Assuming coal price of 70 USD/tonne and gas price of 10 USD/Mmbtu. Assuming a 35% capacity factor for wind power i.e. 35% utilisation, and a 15% capacity factor for solar power THE NEW CLIMATE ECONOMY

The Global Commission on the Economy and Climate

Sources: Citi Research 2012; G. F Nemet, "Beyond the learning curve", Energy Policy 34, 3218-3232 (2006); Bloomberg NEF (Turner 2013); IEA World Energy Outlook 2013, WEO 2012; Lazards 2015

In each of last three years, more low-carbon electricity capacity was added than fossil fuel capacity (GW)

Source: Liebreich, M., 2015. State of the Industry Keynote. Presented at the Bloomberg New Energy Finance Annual Summit, New York, 14 April. Available at: http://about.bnef.com/presentations/liebreich-state-industry-keynote/.

THE NEW CLIMATE ECONOMY

The Global Commission on the Economy and Climate

Investments in low-carbon energy have increased, but 2/3 still goes to fossil fuels

Investment in global energy supply by fossil fuel, non-fossil fuel (renewable energy, nuclear, biofuels) and transmission & distribution in the power sector.

Source: IEA (2014): World Energy Investment Outlook.

2. There is no capital shortage for clean energy

Capital pools for clean energy and infrastructure

THE NEW CLIMATE ECONOMY

The Global Commission on the Economy and Climate

9

Private Finance: The allure of institutional capital

- Institutional investors control over US\$71 trillion of assets
- OECD estimates that less than 1% of their assets are currently allocated to direct infrastructure investment, of which clean energy infrastructure is a small fraction
- New financing vehicles like green bonds and YieldCos are growing rapidly, and can reduce liquidity risk and transaction costs, opening clean energy to a wider range of investors.

Source: Overseas Development Institute

3. Technology is already competive, but power sector private financing is designed around fossil fuels.

Private Finance: New models better fit to renewables could reduce capital costs by 20%

Source: Nelson, D., *Roadmap to a Low Carbon Electricity System in the U.S. and Europe*. Climate Policy Initiative, June 2014.

Private Finance: Using capital markets to close the clean energy gap

Source: Granoff, I et al. The nested barriers to green infrastructure development (forthcoming

4. Public finance also still favors fossil fuels, but DFIs can leverage shift, redesigning the sector around the benefits of clean energy.

Public finance: MDBs and DFIs have a significant role to play in scaling up five forms of international cooperation

Convening initiatives

• These allow public and private institutions to share best practices. Many problems and solutions are common across countries (e.g. Global Innovation Lab for Climate Finance)

Risk mitigation initiatives

• Allow investors to assemble portfolios that meet their risk-return and liquidity requirements.

Standardisation

• Standardize data, methods of measurement, project documentation and processes and qualifications to reduce transaction costs and enable large-scale financing.

Technical assistance for project development

 to create a pipeline of projects, which reduces market risk to developers and manufacturers.

Supportive national policy frameworks

• Improve the investment environment for clean energy.

Public finance: reshape current power sector policies and institutions that unfairly favor incumbent technologies

Source: Nelson, D., *Roadmap to a Low Carbon Electricity System in the U.S. and Europe*. Climate Policy Initiative, June 2014.

Lower risk/return

THE NEW CLIMATE ECONOMY

Higher risk/return

The Global Commission on the Economy and Climate