ANNEXURE

Climate Change and Environment Action Plan of Rajkot District

Contents

Annexure to Background	3
Annexure 1	5
1.1. Industries in Rajkot District	5
1.2. Livestock in Rajkot District	6
Annexure 2	7
2.1. Background Note	7
2.2. Data Source and Methodology	7
Annexure 3	10
3.1. About Greenhouse Gas Emissions Inventorisation	10
3.2. Sources of Activity Data Used in Rajkot's GHG Emissions Inventory	11
Annexure 4	12
4.1. Climate Impact Evaluation of Policies/Programmes in Power and Energy Sector	15
4.2. Climate Impact Evaluation of Policies/Programmes in Agriculture, Forestry & Other Land	18
Use	
4.3. Climate Impact Evaluation of Policies/Programmes in Cross-Cutting: Agriculture & Power	18
4.4. Climate Impact Evaluation of Policies/Programmes in Waste Management Sector	24
4.5. List of Assumptions for Policy Impact Evaluation of Waste Sector	24
4.6. Extension of Formula F1 to F5 in the Policy Impact Evaluation of Waste Sector	24
Annexure 5	25
5.1. Overview of Budgetary Analysis	25
Rationale	25
Objectives	25
Outcomes	25
5.2. Budgetary Analysis Methodology	26
Methodology	26
Assumptions	26
5.3. Analysis of Schemes at District Level	29
MGNREGS	30
PMKSY	31
Green India Mission (GIM)	31
AMRUT	31
DDUGJY and Saubhagya Yojana	32

Annexure A

Annexure to Background

It is crucial to further deepen the process of integrating climate change actions into the developmental planning and programme implementation processes, going beyond the state, and directly involving the districts. This is required to promote a bottom-up approach in addressing climate change concerns, especially mitigation, into ongoing schemes, policies, and programmes at the district level, which is where most of the government's ongoing initiatives and priorities integrate and converge. With SAPCCs being revised, district specific climate action plans will ensure the much-needed directional shift at the district level administration while taking the Nationally Determined Contribution (NDCs) and Sustainable Development Goals (SDGs) forward.

In this context, Vasudha Foundation initiated the project, to develop Climate Change and Environment Action Plan (CCEAP) for multiple districts of India with support from Shakti Sustainable Energy Foundation. In Gujarat, CCEAPs have been developed for Rajkot and Ahmedabad districts in association with the Climate Change Department, GoG, and Gujarat Ecological Education and Research (GEER) Foundation. The key objectives of the CCEAP are:

- To facilitate a bottom-up approach for climate planning
- Identify local level climate change drivers and sectoral mitigation potential
- Identify & propose recommendations for sectors to enhance climate action as well as for local environmental concerns
- Enhance climate accountability of district level administration

The major components, deliverables, and SDG linkages are summarized in the following table:

Major Components	Major Deliverables	Addressing SDG
District and Climate Profile	 Information on demography, administration, land-use etc. District profile including power sector, industry, habitat, agriculture and other natural resources, waste etc. Observed climate variability Climate Change Projections (RCP 4.5 & RCP 8.5: till end of century, in time slices of 2030, 2050, 2070 & 2100) 	The proposed study and action plans directly address at least seven following SDGs at district level:
District GHG profile and trend analysis	 Climate Change Direct Drivers: Source based emission estimations from the sectors of Energy, AFOLU & Waste since 2005 to latest year (using IPCC methodology and as per data availability) and Projections till 2030 – BAU Carbon Footprint of electricity consumption trends and Projections – BAU 	 SDG 2: Zero Hunger (Target 2.1, 2.3, 2.4) SDG 6: Clean Water & Sanitation
Policy Impact Evaluation	 Climate (GHG) impact evaluation of sector specific policies/schemes/rules (Energy, AFOLU, Waste, Cross- cutting). 	SDG 7: Affordable & Clean Energy

Major Components	Major Deliverables	Addressing SDG
Budgetary Allocation Analysis	 Analysis of budget: district budget (where available) & Flagship schemes, to identify allocation for Climate Action (both Mitigation & Resilience) using CPEIR methodology 	SDG 8: Decent Work & Economic Growth SDG 0: Industry
Recommendat ions	methodology District specific sectoral recommendations based on the findings of emission profile and situation and policy analysis Indicating a timeline (to achieve the recommendations), identifying schemes/ programs and departments/Agencies for implementation of proposed measures, and linking with SDGs Recommendations on district specific concerns, Individual Climate Action and suggesting Behavioural Change Communication techniques Proposed Monitoring & Evaluation Plan and an Institutional Set-Up	 SDG 9: Industry, Innovation & Infrastructure SDG 11: Sustainable Cities & Communities SDG 12: Responsible Consumption & Production SDG 13: Climate Action
Impacts of COVID 19	 Changes in electricity and fuel consumption pattern, waste generation & management, migration behaviour, etc. Pre and during first lockdown comparative study of air pollution 	 SDG 17: Partnerships for the Goals

District Profile

1.1. Industries in Rajkot District

Table 1: Industries at a glance - Rajkot District¹

S.No.	Head	Unit	Particular
1	Registered industrial units	No.	43,711
2	Total industrial units	No.	43,711
3	Registered medium and large units	No.	86
4	Estimated average number daily workers employed	No.	2,24,220
	in small scale industries		
5	Employment in large and medium industries	No.	24,000
6	Number of industrial areas	No.	16
7	Turnover of medium and large-scale industries	Crore	15,912
8	Turnover of medium and large-scale industries	Crore	14,600

Table 2: Details of existing micro and small enterprise and artisan units in the district

S.No.	Type of Industry	Unit (No.)	Investment (Rs lakh)	Employment
1	Agro based	2,772	32,193	14,642
2	Soda water	257	457	1,835
3	Cotton textile, woollen, silk and artificial thread- based cloth jute & jute based readymade garment & embroidery	5,238	34,014	15,216
4	Wooden & wooden based furniture paper & paper products	2,433	28,960	17,593
5	Leather based, rubber, plastic & petro based	2,430	37,751	14,434
6	Chemical/ chemical based	1,864	31,145	16,262
7	Mineral based	3,112	1,53,098	24,069
8	Metal based	6,444	58,819	38,772
9	Engineering units	5,663	7,564	28,685
10	Electrical machinery & transport equipment	1,977	20,681	13,225
11	Repair & servicing	11,360	68,641	51,130

_

¹ MSME: District Industrial Profile of Rajkot District (2015)

1.2. Livestock in Rajkot District

Table 3: Rajkot district Livestock population (2012)²

Livestock Category	Number ('000)
Cattle	574
Buffalo	432
Sheep	196
Goat	172
Horses and Ponies	1
Donkeys and Mules	1
Camel	0
Pig	0
Poultry	961

² Department of Animal Husbandry:

https://doah.gujarat.gov.in/Images/animalhusbandary/pdf/Bulletin-2017-18.pdf

Climate Profile and Projections

2.1. Background Note

Global warming has significant impacts on the changes in extreme weather and climate events. The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) confirms that the increasing anthropogenic greenhouse gas (GHG) concentrations which are responsible for the unusual warming of the planet in recent decades, cause the frequent high intensity temperature/precipitation extremes with prolonged duration affecting the living and working environments. These changes are reported to have impact on the social and economic sectors of the society (IPCC 2013). Numerous studies highlighted the increase of temperature and precipitation extremes with high regional variations across the globe. The recent decade has witnessed a high number of extreme precipitation events such as floods/droughts in different parts of the world. Though there is a decrease in annual precipitation, heavy/extreme precipitation events have increased substantially in many regions of the world.

High-resolution modelling or downscaling of general circulation models (GCMs) to higher resolution is essential to obtain the future extremes and their variability under global warming. A key advantage of high-resolution regional climate simulations is their demonstrated the capability of showing the mean as well as extreme temperature and precipitation events. In this report, the daily rainfall and minimum and maximum temperature from National Aeronautics and Space Administration (NASA) Earth Exchange Global Daily Downscaled Projections (NEX-GDDP, Thrasher et al. 2012) dataset has been evaluated with India Meteorological Department (IMD) high-resolution daily gridded rainfall data (0.25° x 0.25°, Pai et al. 2015) and daily gridded maximum and minimum temperature data (1° x 1°, Srivastava et al 2014) for the period 1976–2005 and the possible future changes in mean and various indices of extreme temperature and precipitation have been examined under two emission scenarios RCP4.5 and RCP8.5. The analysis is focused on the distribution of temperature and precipitation changes for baseline period and its future scenarios for 2030s (2021-2050), 2050s (2041-2060), 2070s (2061-2080) and 2090s (2081-2100). It will help policy makers to quantify the potential impacts of extreme events and enable the formulate appropriate adaptation strategies.

2.2. Data Source and Methodology

The NEX-GDDP datasets (0.25° × 0.25° long/lat) covering the entire globe, bias corrected, high-resolution statistically downscaled product, derived from 20 general circulation models (GCMs), under the coupled model inter-comparison project phase 5 (CMIP5), and across two greenhouse gas emissions scenarios of RCP4.5 and RCP8.5 have been used in this analysis. This dataset is mainly generated by using the bias-correction spatial disaggregation (BCSD) method (Wood et al. 2004; Thrasher et al. 2012). These NEX-GDDP datasets include downscaled projections for precipitation and minimum and maximum surface air temperature for the 20 models (Table 4). The present-day simulations are for the period 1950 to 2005 for each experiment, and future projections from 2006 to 2100 for two scenarios RCP4.5 (mid-range emissions) and RCP8.5 (high-end emissions).³

The NEX-GDDP dataset helps to carry out studies on the aspects of climate change and their impacts at local to regional scales. In this present work, we have used the multi-model mean (MMM) approach to investigate the comparison between observational dataset (IMD) and of the NEX-GDDP simulations in the

³ NASA Centre for Climate Simulation: https://www.nccs.nasa.gov/services/climate-data-services

baseline period. The advantage of using the MMM is that it usually outperforms any individual model and averages out internal variability.

The present study investigates the projected changes in mean and extreme temperature and precipitation events over south peninsular India for different time slices with reference to baseline period (1976–2005). The projected changes in precipitation extremes, such as rainy days (a day with precipitation more than 2.5 mm) and the temperature extremes such as warm days (correspond to cases when the maximum temperature exceeds the 90th percentile) and cold days (correspond to cases when the minimum temperature exceeds the 10th percentile) have been analyzed using these high-resolution datasets.

The observed data was analyzed (over the past 68 years) to study current climate variability over six districts. Precipitation, maximum, and minimum temperature data sets are used as the key climate variables in this analysis.

GCMs of NEX-GDDP dataset

Table 4: GCMs of NEX-GDDP dataset⁴

Modelling Centre (or Group)	Institute ID	Model Name
Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology (BOM), Australia	CSIRO-BOM	ACCESS1.0
Beijing Climate Centre, China Meteorological Administration	BCC	BCC-CSM1.1
Beijing Normal University	BNU	BNU-ESM
Canadian Centre for Climate Modelling and Analysis	СССМА	CanESM2
National Centre for Atmospheric Research	NCAR	CCSM4
National Centre for Atmospheric Research	NCAR	CESM1/CAM5
Centre National de Recherches Meteorologiques / Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique	CNRM-CERFACS	CNRM-CM5
Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland Climate Change Centre of Excellence	CSIRO-QCCCE	CSIRO-Mk3.6.0
NOAA Geophysical Fluid Dynamics Laboratory	NOAA GFDL	GFDL-ESM2G GFDL-ESM2M
Institute for Numerical Mathematics	INM	INM-CM4

⁴ Thrasher et. al. (2012). Hydrol. Earth Syst. Sci. .,https://hess.copernicus.org/articles/16/3309/2012/

Institut Pierre-Simon Laplace	IPSL	IPSL-CM5A-LR IPSL-CM5A-MR
Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and National Institute for Environmental Studies	MIROC	MIROC-ESM MIROC-ESM-CHEM
Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology	MIROC	MIROC5
Max Planck Institute for Meteorology	MPI-M	MPI-ESM-LR MPI-ESM-MR
Meteorological Research Institute	MRI	MRI-CGCM3
Norwegian Climate Centre	NCC	NorESM1-M

Climate Change Drivers

3.1. About Greenhouse Gas Emissions Inventorisation

An emissions inventory that identifies and quantifies a region's primary anthropogenic sources and sinks of greenhouse gases (GHGs) is essential; it is the first step in planning the mitigation and adaptation mechanisms for climate action of that region. In order to present the baseline scenario and trends in emissions of Rajkot district, an emission (GHG) profile has been prepared. This exercise not only helps to identify the climate change drivers but also the mitigation potential of each sector/category. A comprehensive inventory would be beneficial for the district in the following ways:

- Decision makers will get insights to create strategies and policies for emission reductions and to track the progress of those policies
- Regulatory agencies and corporations can use the inventory to establish compliance records with allowable emission levels
- Research institutes and local universities can develop future projections/emission models using this data set
- Businesses, public and other interest groups/stakeholders can use the inventory to better understand the sources and trends in emissions

This Action Plan estimates greenhouse gas (GHG) emissions for Rajkot district using the guidelines laid down by the Intergovernmental Panel on Climate Change (IPCC).⁵ Estimates have been done for 12 categories covering three major sectors: Energy, Agriculture, Forestry and Other Land Use (AFOLU), and Waste for the years 2005 to 2019.⁶ Though, Rajkot has some industrial units that fall under the Industrial Processes and Product Use (IPPU) sector but due to unavailability of activity data (industry category wise production details) emissions from the IPPU sector could not be accounted for. However, energy used in industries and the corresponding emissions are reported in the energy sector.

The quality and credibility of GHG inventories rely on the integrity of the methodologies used, the completeness of reporting, and the procedures for compilation of data. As followed at the national level for preparing National Communications (NATCOMs) and Biennial Update Reports (BURs), this action plan has also adopted the Guidelines for National Greenhouse Gas Inventories laid down by the Intergovernmental Panel on Climate Change (IPCC). Mostly, the 2006 IPCC Guidelines were followed, and for a very few categories the 1996 IPCC guidelines were referred to. Attempts were made to estimate emissions with higher tier (from the methodological hierarchy given in the three-tier approach of IPCC Guidelines). Furthermore, wherever possible country specific emission factors (from the two NATCOMs, INCCA Report and the two BURs)⁷ were used in place of default emission factors. To understand the

-

⁵ The 2006 IPCC Guidelines were followed to the extent possible; and for a very few categories the 1996 IPCC guidelines were referred. Background note on GHG Inventorisation and its significance is given in Annexure 3.1

⁶ 2017, 2018 and 2019 estimates are done by applying CAGR on the latest possible GHG calculations for each category (based on availability of activity data)

⁷ India's First National Communication to the UNFCCC, 2004; India's Second National Communication to the UNFCCC, 2012; Indian Network for Climate Change Assessment - INCCA's 2010 Report 'India:

regional dynamics and to make appropriate methodological assumptions in absence of specific activity data/inputs, sectoral expert inputs as well as the work of Greenhouse Gas Platform India (GHGPI) and its sectoral methodology notes were also referred.

3.2. Sources of Activity Data Used in Rajkot's GHG Emissions Inventory

The activity data was sourced from government approved data sets for all the sectors. Emission category wise sources of activity data is listed in the following table.

Sector	Category	Source of Activity Data
District and Climate	Captive Power Plants (CPP)	Office of the Chief Electrical Inspector,
Profile		GoG
	Transport	Petroleum Planning & Analysis Cell
	Manufacturing Industries	(PPAC)
	Residential	
	Agriculture	
	Commercial	
Agriculture,	Rice Cultivation	APY Statistics of Farmer Welfare and
Forestry and Other	Crop Residue Burning	Agriculture Development Department,
Land Use (AFOLU)		GoG
	Urea Fertilization	Fertilizer Association of India
	Enteric Fermentation	Livestock Census of India-19 th (2012);
		18 th (2007); and 17 th (2003)
	Forest Removals	State of Forest Report-2019; 2017;
		2015; 2013; 2011; 2009; 2005; 2003 by
		Forest Survey of India
Waste	Municipal Solid Waste	Census Data, GPCB Annual Reports,
	Domestic Wastewater	GUDC, GWSSB, RMC, RUDA
Carbon Footprint	Carbon Footprint of Electricity	PGVCL
of Electricity	Consumption	
Consumption		

Greenhouse Gas Emissions 2007'; India's First Biennial Update Report to the UNFCCC, 2016; and India's Second Biennial Update Report to the UNFCCC, 2018

Policy Impact Evaluation from a Lens of Climate Change

4.1. Climate Impact Evaluation of Policies/Programmes in Power and Energy Sector

Policy/Scheme	Indicators	Calculation	Emissions	Information
Name		methodology	avoided/mitigated	gaps
Gujarat Solar Policy, 2021				
Solar Power Policy, 2015	Solar Power Installed capacity	GHG emissions mitigated = Installed capacity of solar	40,695 tCO₂e emissions are mitigated annually.	Year on year data is not available for Rajkot, since
Surya Rooftop Yojana	during the policy period.	ground/rooftop in the year of interest x Number of light days ⁸ x Hours of operation per day ⁹ x Plant Load factor		inception of the policies.
Policy for Net- Metering based Solar Rooftop Applications		of the solar plant ¹⁰ × All India grid emission factor (Net) in the year of interest ¹¹		
Gujarat Wind Power Policy, 2016	Wind Power Installed capacity during the policy period	GHG emissions mitigated = Installed capacity of wind ground/rooftop in the year of interest x Number of operational days ¹² x Hours of operation per day ¹³ x Plant Load factor of the solar plant ¹⁴ × All India grid emission	17,55,485 tCO₂e emissions are avoided by W2E plants annually.	Year on year data is not available for Rajkot, since inception of the policy.

⁸ Number of light days considered for Solar energy, per year= 300

⁹ Number of hours of operation per day= 24 hours

¹⁰ PLF for Solar Plants =17%

¹¹ All India Grid Emission factor = 0.86 Kg/KwH

¹² Number of operational days considered for wind energy, per year= 300

¹³ Number of hours of operation per day= 24 hours

¹⁴ PLF for wind Plants =20.88%

Policy/Scheme	Indicators	Calculation	Emissions	Information
Name		methodology	avoided/mitigated	gaps
		factor (Net) in the		
		year of interest ¹⁵		
UJALA Scheme,2015	Number of	GHG emissions		
	LED Bulbs,	avoided = No. of	Total CO ₂ Emissions	Year on year
	tube-lights	LED bulbs sold in	avoided = 2,98,517	data on
	and energy	the year of	tCO₂e	number of
	efficient fans	interest ×		UJALA LEDs
	distributed in	Difference in		distributed
	the district	Wattage between		and number
	during the	incandescent and		of LED
	period.	LED bulbs ¹⁶ ×		streetlamps
		Annual hours of		installed in
		usage ¹⁷ x Net Grid		the district, is
		emission factor		not available
Streetlight National	Number of	GHG emissions	Total CO ₂ Emissions	
Programme (SLNP),	LED street	avoided = No. of	avoided = 46,178	Year on year
2015	Bulbs	LED bulbs installed	tCO₂e	data since
	installed in	in the year of		the inception
	the district	interest ×		of scheme
	during the	Difference in		
	period.	Wattage between		
		sodium vapor and		
		LED bulbs ¹⁸ ×		
		Annual hours of		
		usage ¹⁹ x Net Grid		
		emission factor		
Integrated Power		GHG emissions	Total emissions	
Development	T&D Loss	avoided=	avoided =	None
Scheme	during the	∑ ₂₀₁₅₋₂₀₁₉ Electricity	49,27,630 tCO₂e	
(IPDS)/Restructured	policy period.	generation		
Accelerated Power		avoided with		
Development and		Transmission &		
Reforms Programme		Distribution (T&D)		
(R-APDRP) /		loss improvement		
UDAY Scheme,2015		in the year of		
		interest × All India		
		grid emission		
		factor (net) in the		
		year of interest		

_

¹⁵ All India grid emission factor = 0.86 Kg/KwH

¹⁶ Wattage of an incandescent bulb= 60W; Wattage of an LED bulb= 9W

¹⁷ Annual hours of usage= 10 x 365= 3650 hours

 $^{^{18}}$ Wattage of a sodium vapor lamp= 150 W to 250 W (200 W average is being used); Wattage of an LED street lamp = 70 W

¹⁹ Annual hours of usage= 12 x 365 = 4380 hours

Policy/Scheme	Indicators	Calculation	Emissions	Information
Name		methodology	avoided/mitigated	gaps
PAT (Perform, Achieve and Trade) Scheme	AT&C Loss reduction during the policy period (for DISCOMS) Reduction in specific energy consumption (for other industries)	GHG emissions avoided = (Specific energy consumption (TOE) during the base year of PAT cycle-Specific energy consumption (TOE) during the assessment year of PAT cycle) x (Product output (Tonnes) x Conversion factor ²⁰ (TOE to MtCO ₂)	Total emissions avoided in the district through PAT Scheme = 2,93,123 tCO ₂	None
BRTS Rajkot	Shift in modal share of transport between Before BRTS and after BRTS.	GHG Emissions avoided = ∑2011- 2019 (Population × Trips × Modal share of the particular vehicular category without BRTS × EF) - (Population × Trips × Modal share the particular vehicular category with BRTS × EF)	Total emissions avoided = 2,68,308 tCO ₂	Annual utilization factor of vehicles is required for the particular region and for the current analysis, national values have been used.

 $^{^{20}}$ 1 TOE = 11630 KWh (As per International Energy Agency)

4.2. Climate Impact Evaluation of Policies/Programmes in Agriculture, Forestry & Other Land Use

Policy Name	Indicators	Calculation Methodology	Emissions Mitigated/ Avoided/ Added	Information gap, if any
Wildlife Protection Act, 1972	Maintenance of CO ₂ removals capacity of the terrestrial ecosystem	Add. to C-sink (t CO₂e.) = Area covered *carbon stock density*(- 44/12)	Emissions avoided = 5,70,342.3 t of CO ₂ e	None
Diversion of forests for non-forest purpose under the Forest Conservation Act, 1980	Loss of carbon sink due to reduction in forest area	Loss in carbon sink= Area diverted*carbon stock density*44/12	Emissions added =3,705.24 tonnes of CO ₂ e	None
Social Forestry Scheme	Increase tree cover outside forest area	CO ₂ e Sequestered = Area converted*carbon stock density*44/12	Emission Avoided = 5,45,000 tCO ₂ e	None
National Agroforest Policy 2014	 Expansion of tree plantation in complementarity and in integrated manner with crops Improved resilient cropping and farming systems to minimize the risk during extreme climatic events. 	Increase in tree cover and computation of corresponding CO ₂ sequestration	Calculations could not be done due to data gap	 Type of species planted, or total area covered under plantation Any significant achievements since the implementation of the scheme in Rajkot

Policy Name	Indicators	Calculation Methodology	Emissions Mitigated/ Avoided/ Added	Information gap, if any
Cattle and Buffalo Development Programme	Improved productivity of cross-bred cattle is likely to reduce or keep the emissions constant Assumption: Total number of indigenous and crossbreed cattle have been attributed to this policy from the year 2000	 Estimating milk produced by crossbreed cattle= No. of crossbreed *yield Estimating number of indigenous cattle required to produce aforementioned quantity of milk Calculating Enteric fermentation emissions & manure management emissions for both crossbreed and indigenous cattle The difference between these two emissions are the emissions added or avoided 	Total emissions avoided=1791 tonnes CO ₂ e	Specific number of livestock in Rajkot that can be attributed to this scheme
Feed and Fodder Development Programme	Reduction in CH ₄ emission during Enteric Fermentation in Livestock	Higher tier approach for enteric fermentation emission estimation of IPCC methodology	Calculations could not be done due to data gap	Data required to make qualitative or quantitative judgement was not available. The specific data inputs that are required to make such a judgment include, in our opinion: 1. Quantity of feed additives added to the fodder 2. Quantity of Green fodder

Policy Name	Indicators	Calculation Methodology	Emissions Mitigated/ Avoided/ Added	Information gap, if any
				provided to the animals 3. Details of the target population 4. Improved emission factors due to better feed intake
Soil Health Card Scheme	Improve the nutrient proportion of the soil in order to reduce the usage of the fertilizers	Emissions avoided= Reduction in fertilizer use (kg) *emission factor	Calculations could not be done due to data gap	The specific data inputs that are required to make such a judgment include, in our opinion: 1. Actual Area covered under the scheme 2. Actual Reduction in the fertilizer usage due to the scheme
National Food Security Mission	Impact on GHG emissions from the cultivation of food crops Increase in N₂O emissions due to increase in nitrogen fixing (Pulses) crop production For Rajkot: Pulses & Wheat	 Emissions from nitrogen fixing crops Crop residue burning emissions Emissions from urea used in the fields 	Emissions added = 75,273 t CO2e.	1. Percentage of wheat and pulses production that can be attributed to NFSM. (It was found that the total production of wheat and pulses of the state of Gujarat is equal to the total production under NFSM policy) 2. Amount of urea used in wheat & pulses
Soil & Moisture Conservation (SMC)	Enhancing the land productivity and increasing the soil moisture availability for a longer period.	Emissions estimations based on crop yield and reduction of irrigation need	Calculations could not be done due to data gap	If any quantifiable results were observed in crop yield or enhancement of green spaces

4.3. Climate Impact Evaluation of Policies/Programmes in Cross-Cutting: Agriculture & Power

Policy	Indicators	Calculation	Emissions	Information
Name		Methodology	Mitigated/Avoided/Added	gap, if any
National	Enhancement	Total emissions (tCO₂e)	1,033 tonnes CO₂e avoided	None
Mission	of the water	= Total fertilizer	(due to decrease in use of	
on Micro	use efficiency	consumption*EF of	fertilizer)	
Irrigation	in a	indirect		
	sustainable	emissions*Fraction of		
	manner with	gas loss through		
	decline in the	volatilized N from Urea		
	use of	application*GWP of		
	fertilizers and	N ₂ O*44/28		
	electricity			
Pradhan	Reduction in	Total sequestration	Total emissions avoided	None
Mantri	CO ₂ removals	(tCO₂e) = {new LPG	=2,86,393 t of CO₂e per	
Ujjwala	and improve	connections in Rajkot	year	
Yojana	the health of	district (i.e., no. of		
	women and	households) * forest		
	children ²¹	area saved by one		
		household due to		
		reduction in fuel wood		
		consumption*carbon		
		stock density*(-44/12)}		
		 - {standard weight of 		
		one		
		connection*assuming		
		each connection books		
		2 LPG cylinders per year		
		*LPG NCV*CO ₂ EF}		
		connection*assuming		
		each connection books		
		2 LPG cylinders per year		
		*LPG NCV*CO ₂ EF}		

_

²¹ Limitation: We don't know what number of LPG connections actually replaced fuelwood use. Currently it is assumed that 20% of new connections replace fuelwood. It has also been assumed that each connection uses two LPG cylinders per year.

4.4. Climate Impact Evaluation of Policies/Programmes in Waste Management Sector

Policy/Sche me	Indicators	Emission Estimation Methodology	Emissions Added/avoided/miti gated	Information gaps
		SANITATION	8	
Total Sanitation Campaign (Completed: 1999-2012)	Number of household & community/sc hool latrines constructed	F1. Total organic waste (TOW) = (Population*BOD) *0.001*I*365; F2. CH4= (TOW-S-R) *EF Considering Assumptions A1-A5 (See Annexure 5.4)	Annual average GHG emission of +14,798 tCO₂e for 2,97,743 IHHL latrines and +49,282 tCO₂e for 3,770 community/school latrines between 2006 to 2012. Emission reduction by baseline: IHHL: 43% Community latrines: 8.7%	1. Data not available at public domain from 1999 to 2005 2. District level data not available.
Nirmal Bharat Abhiyan or Clean India Campaign (Completed: 2012-2014)	Number of household & community/sc hool latrines constructed	F1. Total organic waste (TOW) = (Population*BOD)*0.001* I*365; F2. CH4= (TOW-S-R)*EF Considering Assumptions A2-A6 (See Annexure 5.4)	Annual average GHG emission of +861 tCO₂ for 17,320 IHHL latrines and +5,256 tCO₂e for 402 community/school latrines between 2012 to 2014. Emission reduction by baseline: IHHL: 43% Community latrines: 8.7%	District level data not available.
Swachh Bharat Mission Urban (Ongoing: 2014 - till date)	Number of household, community & public toilets constructed	F1. Total organic waste (TOW) = (Population*BOD)*0.001* I*365; F2. CH4= (TOW-S-R)*EF Considering Assumptions A2-A5 (See Annexure 5.4)	Annual average GHG emission of +1,788 tCO ₂ e for 35,981 IHHL latrines and +20,282 tCO ₂ e for 1,551 community/school latrines between 2014 to 2019/20. Emission reduction by baseline: IHHL: 43% Community latrines: 8.7%	District level data not available.

Policy/Sche me	Indicators	Emission Estimation Methodology	Emissions Added/avoided/mitigated	Information gaps
Integrated	Number of	F1. Total organic waste	ILCS revised (2008)	1. Only
Low-Cost	household	(TOW) =	was not	country
Sanitation	toilets	(Population*BOD)	implemented in	level
Scheme	constructed	*0.001*I*365;	Gujarat	cumulative
(ILCS)	and converted			data
(Completed:	from dry	F2. CH4= (TOW-S-R) *EF		available for
1960-2014)	latrines			1960 to
with revision		Considering Assumptions		2008 (28
from 2008)		A2-A5 & A7 (See		lakh latrines
		Annexure 5.4)		constructed)
Swachh	Number of	F1. Total organic waste	Annual average GHG	No data gap
Bharat	household	(TOW) =	emission of +12,063	
Mission	toilets	(Population*BOD)	tCO₂e for 242,719	
Rural	constructed	*0.001*I*365;	IHHL latrines	
(Ongoing:			between 2014-	
2014 - till date)		F2. CH4= (TOW-S-R) *EF	2019/20.	
		Considering Assumptions	Emission reduction	
		A2-A4 (See Annexure 5.4)	by baseline:	
			IHHL: 43%	
Pradhan	Number of	F1. Total organic waste	Annual average GHG	No data gap
Mantri Awas	houses	(TOW) =	emission of +10,295	
Yojana	constructed	(Population*BOD)*0.001*	tCO₂e for 25,717	
(Ongoing:	(households	I*365;	IHHL latrines	
2014 - till	essentially		between 2014-	
date)	include toilet facility)	F2. CH4= (TOW-S-R)*EF	2019/20.	
		Considering Assumptions	Emission reduction	
		A2-A4 & A8 (See	by baseline:	
		Annexure 5.4)	IHHL: 8.9%	
Integrated	Number of	F1. Total organic waste	No data available	Number of
Urban	household,	(TOW) =		toilets
Sanitation	community &	(Population*BOD)		constructed
Programme	public toilets	*0.001*I*365;		under the
(IUSP)	constructed			scheme in
(Completed:		F2. CH4= (TOW-S-R) *EF		the district
2009 -2014)				not available
		Considering Assumptions		
		A2-A4 (See Annexure 5.4)		
		WASTE MANAGEMENT	•	

Policy/Sche me	Indicators	Emission Estimation Methodology	Emissions Added/avoided/mitigated	Information gaps
Solid Waste	Collection,		Annual average GHG	No scheme
Managemen t Rules, 2016 Amendment 2018 - Integrated Solid Waste Managemen t Projects (ISWM) - Rajkot Smart City Developmen t Corporation	• Collection, segregation, storage, transportation , processing and disposal of municipal solid waste (MSW) • Amount of biodegradable waste processed through composting/vermi-composting	F4. CH4 emissions from biological treatment = Σ _i (M _i x EF _i) x 10^{-3} - R Considering Assumptions A12-A13 (See Annexure 5.4)	emission of -4,160 tCO ₂ e was avoided due to 9,672 tonnes of MSW treated biologically through composting	No scheme wise data available.
Bio-medical	Bio-medical	F5. CO ₂ emission for the	Annual average GHG	District wise
Waste	waste	total amount of waste	emission of +135	incineration
Managemen	segregation,	combusted:	tCO₂e for 236 tonnes	(yellow)
t Rules, 2016 &	storage, collection,	Σ _i (SW _i x dm _i x CFi x FCF _i x OF _i) x 44/12	of BMW treated by incineration	waste data not available
Amendment	transport & &	Considering Assumption	incineration	not available
2018	disposal	A14 (See Annexure 5.4)		
	Amount of BMW (yellow waste) incinerated (captive treatment & CBWTF)			
Hazardous &	Amount of	Formula F5 (I = hazardous	No Hazardous waste	There is not
Other	hazardous	waste)	TSDF (Treatment,	data
Wastes	waste		Storage, Disposal	available for
(Manageme nt and	disposed by incineration as		Facility) at Rajkot	TSDFs
nt and Transbound	part of			receiving district wise
ary	hazardous			hazardous
Movement)	waste			waste
Rules 2016	treatment			174300
	processes			
		STE WATER: DOMESTIC & IN	DUSTRIAL	
National	Number of	F3. Total Organic Waste,	Annual average GHG	Scheme/Poli
River	STPs	TOW (kg of BOD per year)	emission	cy wise data
Conservatio	constructed to	= BOD*0.001*I*365;	2004-2015: +3,625	not available
n Plan	reduce river		tCO₂e for 12 MLD	
	pollution load	F2. Annual tCH ₄ emissions	STP capacities	

Policy/Sche me	Indicators	Emission Estimation Methodology	Emissions Added/avoided/miti gated	Information gaps
Jawaharlal Nehru National Urban Renewal Mission on	No. of STPs created for integrated development of infrastructural	= (TOW-S-R) *EF, Considering Assumptions A9-A11 (See Annexure 5.4)	2010-2015: +15,404 tCO₂e for 51 MLD STP capacities Emission reduction	
Urban Infrastructur e and Governance	services in the cities and secure effective linkages between asset creation and asset management		by baseline: 14.43%	
Atal Mission for Rejuvenatio n and Urban Transformati on (AMRUT) (Ongoing: 2015-till date)	No. of STPs constructed for Sewerage and septage management	Formula F3 & F2	No data available	Rajkot is a mission city but no data available separately for STPs built under this mission
Common Effluent Treatment Plant (CETP) for Medium & Small- Scale industries	Industry category wise Wastewater treated in different CETPS	Formula F3 & F2	No data available	Industry category wise wastewater generation & treatment details not available but have the potential to improve database availability
Online Monitoring of Industrial Emission & Effluent (OCEMS)	Industry category wise Wastewater treated	Formula F3 & F2	No data available	No data available in the public domain but this system hosted by CPCB has the potential to provide industry

Policy/Sche	Indicators	Emission Estimation	Emissions	Information
me		Methodology	Added/avoided/miti gated	gaps
			Parca	category
				wise
				wastewater
				generation,
				treatment
				and
				discharge
				information

4.5. List of Assumptions for Policy Impact Evaluation of Waste Sector

Assumption	
No	Assumptions
A1	Impact estimated for 2006-2012 wherein activity data available
A2	All new IHHLs constructed are operational and in use
A3	IHHL constructed are of two-pit pour flush type and community latrine are of septic tank type.
A4	Baseline: In the absence of IHHLs the wastewater is assumed to be discharged in water bodies (43.3%) and land (56.7%) as sourced for Gujarat
A5	No. of latrines constructed in the district were determined @ of %household share of districts to that of the state.
A6	Impact estimated for 2012-2014
A7	Impact estimated for 2009-2014
A8	IHHL constructed are of septic tank type
A9	Impact estimated for all STPs constructed and operational between 1959 to 2015 wherein aggregate activity data is available for across schemes as an STP inventory as reported
A10	Wastewater treated in aerobic system is considered to be 'not well managed/overloaded'
A11	In the absence of STPs installed the untreated wastewater is assumed to be discharged in water bodies (43.3%) and land (56.7%) as applicable for Gujarat
A12	Impact emission estimated for 2017-2018 wherein the data available for organic waste treatment
A13	Considered as a policy impact of SWM Rules 2016 for activities implemented across schemes/projects
A14	Impact emission estimated for 2016-2019 wherein the data available for hospital waste treatment by incineration

4.6. Extension of Formula F1 to F5 in the Policy Impact Evaluation of Waste Sector

Extension of Formula-F1	Population is the total number of toilet users per day, BOD per capita per day and I is the correction factor for additional industrial BOD discharged into sewers
Extension of	S = Organic component removed as sludge and R = Amount of CH4 recovered, in the
Formula-F2	estimation year and EF = Emission Factor
Extension of Formula-F3	$BOD = Capacity of STP (MLD)*10^6 (conversion to L)*198 mg/L (BOD of domestic waste water)*10^-3 (conversion to g/L), I = Correction factor for additional industrial BOD discharged into sewers$
Extension of Formula-F4	Mi = Mass of organic waste treated by biological treatment type; EFi = Emission factor for treatment I; i = composting or anaerobic digestion; R = total amount of CH4 recovered in inventory year
Extension of Formula-F5	SWi = Total amount of solid waste of type i (wet weight) incinerated or open-burned; dmi = dry matter content in the waste (wet weight) incinerated or open-burned; CFi = fraction of carbon in the dry matter (total carbon content); FCFi = fraction of fossil carbon in the total carbon; OFi = oxidation factor; i = type of waste: bio-medical waste

Budgetary Analysis to Estimate Expenditure towards Climate Action

5.1. Overview of Budgetary Analysis

Rationale

Countries across the world have realized the need to translate their international commitments to the United Nations Framework Convention on Climate Change (UNFCCC) into national policies and action plans. They are also focussing towards understanding the responsiveness of their policies to climate change as well as their impacts on ground. There is increased public scrutiny and demand for accountability to demonstrate the impacts of budgetary allocations and spending, particularly on poor and vulnerable groups. Thus, it has become extremely important to track and report financial flows that support climate change mitigation and adaptation, to build trust and accountability with regard to climate finance commitments and monitor trends and progress in climate related investment.

Through its ambitious NDC targets and the subsequent policies rolled out to fulfil them, the Government of India has prioritized the financing requirements of climate change interventions. Owing to the federal structure, the onus of climate change efforts in India filters down to state and local governments.

Therefore, an understanding of the financial flows and allocations at state and district levels can enable a better understanding of the extent and impact of climate action on ground. Further, many activities which address climate change (mitigation and resilience) and are aligned with climate SDGs are already included in national and state budgets but are rarely explicitly referenced or categorized as such. Identification of these actions can further help authorities streamline climate action at local level.

Objectives

The primary objective of this exercise is to examine the budgetary allocations to climate change mitigation and resilience measures at district level.

The exercise will Identify of on-ground climate relevant actions at district level and analyse expenditure on the climate action aimed at mitigation and resilience as well as aligning with climate relevant Sustainable Development Goals (SDGs).

Outcomes

The analysis for budgetary allocations to climate action at the district level will

- Help in the identification of gaps and overlaps in the information available on district level expenditures on schemes and programmes aligned with climate action goals.
- Strengthen climate action at district level by supporting district administration in identifying existing programmes with climate relevant activities.
- Support in the development of relevant recommendations to district authorities to accelerate climate-oriented actions at district level, such as
 - o Integration of district development priorities with climate change mitigation and resilience priorities and streamlining of funds for the same.

Improving coordination between various line departments, state and central ministries to better manage public spending and investments in line with key national and state climate policy intentions.

5.2. Budgetary Analysis Methodology

Methodology

The methodology developed for analysis of district level expenditure is based on the public financial management segment of 'The Climate Public Expenditure and Institutional Review (CPEIR): a methodology to review climate policy, institutions and expenditure'.

The approach, championed by UNDP, builds on the World Bank's Public Expenditure Reviews (PERs) and aims to equip policymakers with a tool to analyse the allocation of public resources, both domestic and international.

Assumptions

'Actuals' for any year are considered as actual expenditure on a particular scheme

Two kinds of relevance criteria have been considered

- Relevance of scheme to climate mitigation or resilience based on its ability or future ability to address climate shang
 - or future ability to address climate change by understanding the objectives and activities under each scheme direct, indirect, marginal and potential
- Relevance of scheme to climate mitigation and/or resilience based on budgetary allocation within the scheme – i.e., how much of the budget under a scheme is allocated to climate relevant activities

The following steps were undertaken for review and analysis of district level expenditures:

- Review of available data exhaustive literature review was conducted to identify district level
 information available from state government resources and flagship scheme portals. For
 missing information, respective departments or district officials were contacted to collect
 budget details
- 2. **Sources of funds at district level** based on literature and inputs from district authorities, the various sources of funds for the identified schemes and programmes were identified. This exercise will help in developing recommendations to improve budgetary allocation to climate action.
- 3. **Define boundary** For this exercise, due to limitation on data availability and uniformity, certain boundary conditions were applied to have a consistent analysis. The table below lists the sources referred for each state and scheme analysed

State/Scheme	Source	Assumptions
Maharashtra (Pune,	Planning Department (Annual	'Actuals' in the budget
Nagpur)	District Budgets)	considered actual expenditure
		for a particular year
Gujarat (Ahmedabad,	**District Planning Office	
Rajkot)		
Madhya Pradesh (Bhopal,	**Not available (yet)	
Indore)		

The CPEIR involves a review and analysis of three main areas with regard to climate change:

- Policy: The scope and comprehensiveness of climate policy at the national and sub-national level, within the sectors and the degree to which the policies are prioritized, costed or sequenced.
- Institutions: The institutional nexus related to climate policy delivery and the modes of cross government synchronization, accountability and decentralization.
- Finances: The proportion of public expenditure relevant to the distribution of it across sectors, the national/sub-national split and in some cases, proportion domestically/externally funded.

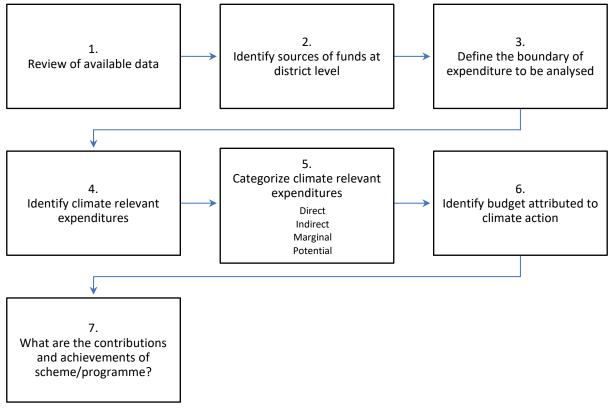


Figure 3: District expenditure review and analysis methodology

- 4. **Identify climate relevant expenditures** the subheads were selected on the basis of their relevance to climate action heads corresponding to sectors of water, sanitation, rural and urban development, forestry, energy, and agriculture were selected.
- 5. **Categorize expenditures** the objectives and activities undertaken in the shortlisted schemes and programmes were reviewed to understand their outcomes, impacts and potential vis-à-vis climate action. Based on the extent of climate action, the categorization criterion was as shown in Table 5.
- 6. **Identify budget attributed** based on the categorization done in the previous step, an internal discussion was undertaken to assign per cent budget attribution to climate action for each scheme. Further analysis was undertaken to understand expenditure trends.
- 7. **Achievements of the scheme/programme** Further, based on the impacts, the schemes and programmes were categorized under Mitigation (M), Resilience building (R) or both (M+R).

Table 5: Categorization of climate actions

Category vis-à- vis climate action	Rationale	% budget attributed to climate action
Direct	Scheme and programmes whose principal objectives, activities and outcomes have direct climate resilience and mitigation implications or are aligned with climate SDGs.	70 to 100
Indirect	Schemes and programmes which have significant climate components in terms of activities and outcomes building climate resilience, climate mitigation and/or climate SDG co-benefits. However,	35 to 69

	the objectives do not have climate action as a primary objective.	
Marginal	Schemes and Programmes that have some small number of indirect climate mitigation and/or resilience co-benefits and have scope for including more climate-oriented actions	1 to 35
Potential	Schemes and programmes which currently have no climate implication, however, have been identified to have scope for including climate-oriented development activities in the future.	0

5.3. Analysis of Schemes at District Level

A total of 39 schemes, as listed below, were reviewed to identify those with climate resilience and mitigation relevance. Of these, based on availability of information across districts as well as relevance to climate actions, five schemes were selected for further analysis.

1	MGNREGS	20	Integrated Child Development Scheme (ICDS)
2	Deen Dayal Antyodaya Yojana – NRLM	21	Pradhan Mantri Ujjwala Yojana
3	Deen Dayal Upadhyaya – Grameen	22	Pradhan Mantri Kaushal Vikas Yojana
	Kaushalya Yojana		
4	Pradhan Mantri Gram Sadak Yojana	23	Digital India – Public Internet access programme
5	National Social Assistance Programme	24	Infrastructure related programmes like telecom,
			railway, highways, waterways, mines etc
6	Pradhan Mantri Awas Yojana – Urban and	25	Pradhan Mantri Khanij Kshetra Kalyan Yojana
	Rural		
7	SBM – Urban and Rural		Integrated Power Development Scheme
8	PMKSY		Non-Lapsable Central Pool of Resources scheme
9	Integrated Watershed Management	28	RKVY
	Programme		
10	Digital India Land Records Modernization	29	Soil Health Card
	Programme		
	Deen Dayal Upadhyay Gram Jyoti Yojana		E-National Agriculture Markets
12	Shyama Prasad Mukherji National Rurban	31	Green India Mission
12	Mission	22	Assoluted Indication Develop December 1
13	Heritage City Development and	32	Accelerated Irrigation Benefit Programme
1/1	Augmentation Yojana AMRUT	33	Command Area Development and water
	AMMOT	33	Management Programme
15	Smart Cities Mission	34	Pradhan Mantri Adarsh Gram Yojana
16	Pradhan Mantri Fasal Bima Yojana		Prime Minister's Employment Generation
	•		Programme
17	National Health Mission	36	Sugamya Bharat Abhiyan
18	Sarva Shiksha Abhiyan	37	Beti Bachao Beti Padhao
19	Mid-Day Meal Scheme	38	National Food Security Act
		39	Other schemes

MGNREGS

Ministry of Rural Development (MoRD) lists 17 major categories of activities performed under MGNREGS²². Out of these, 11 can be attributed to be acting on climate change, categorised as mitigation specific, resilience specific or both (See Table 6).

Table 6: Categories of works under MGNREGS

S.No.	Category of Works	Type of climate
		impact
1	Anganwadi/other rural infra	Not Relevant
2	Bharat Nirman Rajiv Gandhi Sewa Kendra	Not Relevant
3	Food grain	Not Relevant
4	Other works	Not Relevant
5	Play ground	Not Relevant
6	Works on individual land (Category IV)	Not Relevant
7	Coastal areas	R
8	Drought proofing	R
9	Fisheries	R
10	Flood control and protection	R
11	Land development	R
12	Micro irrigation works	M+R
13	Renovation of traditional water bodies	M+R
14	Rural connectivity	R
15	Rural drinking water	M+R
16	Rural sanitation	R
17	Water conservation and water harvesting	M+R

Only the activities, for which work has been completed or is under progress, have been included in the budgetary apportioning. Since the daily wages are independent of the work being done, we can safely attribute the district budget for the year to each activity, depending on the number of works performed in the year under consideration.

- % Budgetary spending (on a particular activity) = (Expenditure on the particular activity/State MGNREGS budget expenditure) *100
- Expenditure on a particular activity= (Number of works (completed + under progress) under the activity/ Total works done under MGNREGS in the district) *State Budget

²² The Mahatma Gandhi National Rural Employment Guarantee Scheme (MGNREGS) was enacted in 2005 and seeks to improve the rural infrastructure, augment land and water resources, and strengthen the livelihood resource base of the rural poor by providing at least one hundred days of guaranteed wage employment in a financial year to every household whose adult members are willing to do unskilled manual work.

PMKSY

PMKSY²³ lists district-wise, number of works done under micro-irrigation, each year. Similarly, PMKSY also lists the number of works done in the whole state in a particular year. This can help us to apportion the percentage of Micro-irrigation works performed in a particular district, of the whole state.

Also, since we are provided with the State budget for the micro-irrigation activities performed under

Also, since we are provided with the State budget for the micro-irrigation activities performed under PMKSY, we can derive the district budgetary spending by multiplying the State budgetary spending with the percentage calculated above. Further, based on categorization vis-à-vis climate action, the scheme has been identified as an 'Indirect' category scheme, as although its primary objective is not climate resilience yet the activities have many climate co-benefits.

- Budgetary spending on micro-irrigation activities= (Number of works done in a district in a particular year/ Number or works done in the state the same year) * State Budgetary Expenditure for the year.
- Budgetary spending that can be attributed to climate action= (Budgetary spending on Microirrigation x 0.69)
- 69% is the budget attributed for activities with indirect climate benefits

Green India Mission (GIM)

Launched in February 2014 by the Ministry of Environment, Forests and Climate Change, Green India Mission aims at increasing the green cover of a State/District under various sub-missions, as stated below:

- 1. Enhancing quality of forest cover and improving ecosystem service
- 2. Ecosystem restoration and increase in forest cover
- 3. Enhancing tree cover in urban areas (including institutional lands)
- 4. Agro-forestry and social forestry (increasing biomass and creating carbon sink)
- 5. Restoration of wetlands
- 6. Promoting alternative fuel energy

Since the activities performed under GIM have a direct impact towards mitigating climate change, 100% of budget allocated to the district can be attributed to climate action.

However, an assumption has been made while proportioning the budget to the district. GIM provides budget allocation on the basis of Forest Division/Circle, hence, the district budget has been calculated by apportioning the budget for the Division/Circle on the basis of forest cover in each of the districts falling under that particular Division/Circle.

AMRUT

The AMRUT mission has been identified as a programme that indirectly supports climate action. The activities performed under the mission can be broadly categorized into five sectors:

1. Water Supply

²³ The major objective of PMKSY is to achieve convergence of investments in irrigation at the field level, expand cultivable area under assured irrigation, improve on-farm water use efficiency to reduce wastage of water, enhance the adoption of precision-irrigation and other water saving technologies (More crop per drop), enhance recharge of aquifers and introduce sustainable water conservation practices by exploring the feasibility of reusing treated municipal waste water for peri-urban agriculture and attract greater private investment in precision irrigation system.

Programme architecture of PMKSY is to adopt a 'decentralized State level planning and projectized execution' structure that will allow States to draw up their own irrigation development plans based on District Irrigation Plan (DIP) and State Irrigation Plan (SIP).

- 2. Sewage and septage management
- 3. Stormwater drainage
- 4. Green space development
- 5. Urban transport

As per the methodology applied in the district budgetary analysis, 50% of the budget approved for water supply could be attributed to climate action. Similarly, the figures stand at 60% and 60% for Sewage & Septage Management and Green Space Development, respectively.

• Budget attributed to Climate Action= (Approved budget for the particular activity x Physical Progress (%) x Percentage allocation viz-a-viz Climate Action)

DDUGJY and Saubhagya Yojana

11 major activities are carried out under DDUGJY and Saubhagya Yojana, implemented by the Ministry of Power, GOI. These are:

- 1. Installing New substations
- 2. Augmentation of existing substations
- 3. Installing DTRs
- 4. Laying LT Lines
- 5. Installing 11KV feeders
- 6. Installing 33/66 KV feeders
- 7. Feeder Segregation
- 8. Works done under Sansad Adarsh Gram Yojna (SAGY)
- 9. Consumer Metering
- 10. DTR metering
- 11. Feeder metering

Out of these activities 6 activities directly support climate action, hence 50% of the budget expended on the scheme in a particular district can be attributed to climate action.